REVIEW

The exploration of N6-deoxyadenosine methylation in mammalian genomes

  • Xuwen Li 1 ,
  • Zijian Zhang 1 ,
  • Xinlong Luo 1 ,
  • Jacob Schrier 1 ,
  • Andrew D. Yang 1,2 ,
  • Tao P. Wu , 1,3,4
Expand
  • 1. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
  • 2. Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
  • 3. Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
  • 4. Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA

Received date: 03 Mar 2021

Accepted date: 12 Jul 2021

Published date: 15 Oct 2021

Copyright

2021 The Author(s) 2021

Abstract

N6-methyladenine (N6-mA, m6dA, or 6mA), a prevalent DNA modification in prokaryotes, has recently been identified in higher eukaryotes, including mammals. Although 6mA has been well-studied in prokaryotes, the function and regulatory mechanism of 6mA in eukaryotes are still poorly understood. Recent studies indicate that 6mA can serve as an epigenetic mark and play critical roles in various biological processes, from transposable-element suppression to environmental stress response. Here, we review the significant advances in methodology for 6mA detection and major progress in understanding the regulation and function of this non-canonical DNA methylation in eukaryotes, predominantly mammals.

Cite this article

Xuwen Li , Zijian Zhang , Xinlong Luo , Jacob Schrier , Andrew D. Yang , Tao P. Wu . The exploration of N6-deoxyadenosine methylation in mammalian genomes[J]. Protein & Cell, 2021 , 12(10) : 756 -768 . DOI: 10.1007/s13238-021-00866-3

1
Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li M, Eleftheriou M, Crutchley J(2020) N 6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet 52:48–55

DOI

2
Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht JR, Sebra RP, Muir TW, Landweber LF(2019) Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell 177:1781–1796

DOI

3
Boyer HW(1971) DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol 25:153–176

DOI

4
Bromberg S, Pratt K, Hattman S(1982) Sequence specificity of DNA adenine methylase in the protozoan Tetrahymena thermophila. J Bacteriol 150:993–996

DOI

5
Charles MP, Ravanat JL, Adamski D, D’Orazi G, Cadet J, Favier A, Berger F, Wion D(2004) N6-methyldeoxyadenosine, a nucleoside commonly found in prokaryotes, induces C2C12 myogenic differentiation. Biochem Biophys Res Commun 314:476–482

DOI

6
Chen L, Zhang M, Guo M(2020) DNA N6-methyladenine epigenetic modification elevated in human esophageal squamous cell carcinoma: a potential prognostic marker. Discov Med 157:85–90

7
Diekmann S(1987) DNA methylation can enhance or induce DNA curvature. EMBO J 6:4213–4217

DOI

8
Douvlataniotis K, Bensberg M, Lentini A, Gylemo B, Nestor CE(2020) No evidence for DNA N6-methyladenine in mammals. Sci Adv 6:eaay3335

DOI

9
Dunn DB, Smith JD(1955) Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 175:336–337

DOI

10
Dunn DB, Smith JD(1958) The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J 68:627–636

DOI

11
Falnes P, Johansen RF, Seeberg E(2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178–182

DOI

12
Fernandes SB, Grova N, Roth S, Duca RC, Godderis L, Guebels P, Mériaux SB, Lumley AI, Bouillaud-Kremarik P, Ernens I(2021) N6-methyladenine in eukaryotic DNA: tissue distribution, early embryo development, and neuronal toxicity. Front Genet 12:696

DOI

13
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW(2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

DOI

14
Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Doré LC(2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161:879–892

DOI

15
Gorovsky MA, Hattman S, Pleger GL(1973) [6N]methyl adenine in the nuclear DNA of a eucaryote, Tetrahymena Pyriformis. J Cell Biol 56:697–701

DOI

16
Gray MW(2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403

DOI

17
Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C, Shi Y(2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878

DOI

18
Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Te LY, Peng PH, Zhang LS(2020) N6-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 78:382–395

DOI

19
He S, Zhang G, Wang J, Gao Y, Sun R, Cao Z, Chen Z, Zheng X, Yuan J, Luo Y(2019) 6mA-DNA-binding factor Jumu controls maternal-to-zygotic transition upstream of Zelda. Nat Commun 10:1–14

DOI

20
Hong T, Yuan Y, Wang T, Ma J, Yao Q, Hua X, Xia Y, Zhou X(2016) Selective detection of N6-methyladenine in DNA via metal ionmediated replication and rolling circle amplification. Chem Sci 8:200–205

DOI

21
Huang W, Xiong J, Yang Y, Liu SM, Yuan BF, Feng YQ(2015) Determination of DNA adenine methylation in genomes of mammals and plants by liquid chromatography/mass spectrometry. RSC Adv 5:64046–64054

DOI

22
Im K, Mareninov S, Diaz MFP, Yong WH(2019) An introduction to performing immunofluorescence staining. Methods Mol Biol 1897:299–311

DOI

23
Koh CWQ, Goh YT, Toh JDW, Neo SP, Ng SB, Gunaratne J, Gao YG, Quake SR, Burkholder WF, Goh WSS(2018) Singlenucleotide-resolution sequencing of human N6-methyldeoxyadenosine reveals strand-asymmetric clusters associated with SSBP1 on the mitochondrial genome. Nucleic Acids Res 46:11659–11670

DOI

24
Koziol MJ, Bradshaw CR, Allen GE, Costa ASH, Frezza C, Gurdon JB(2016) Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 23:24–30

DOI

25
Kramer B, Kramer W, Fritz HJ(1984) Different base/base mismatches are corrected with different efficiencies by the methyldirected DNA mismatch-repair system of E. coli. Cell 38:879–887

DOI

26
Kulis M, Esteller M(2010) DNA methylation and cancer. Adv Genet 70:27–56

DOI

27
Kweon SM, Chen Y, Moon E, Kvederaviciutė K, Klimasauskas S, Feldman DE(2019) An adversarial DNA N6-methyladeninesensor network preserves polycomb silencing. Mol Cell 74:1138–1147

DOI

28
Li E, Zhang Y(2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133

DOI

29
Li W, Shi Y, Zhang T, Ye J, Ding J(2019a) Structural insight into human N6amt1–Trm112 complex functioning as a protein methyltransferase. Cell Discov 5:1–13

DOI

30
Li X, Zhao Q, Wei W, Lin Q, Magnan C, Emami MR, Wearick-Silva LE, Viola TW, Marshall PR, Yin J(2019b) The DNA modification N6-methyl-2’-deoxyadenosine (m6dA) drives activity-induced gene expression and is required for fear extinction. Nat Neurosci 22:534–544

DOI

31
Li H, Wu Z, Liu X, Zhang S, Ji Q, Jiang X, Liu Z, Wang S, Qu J, Zhang W(2020a) ALKBH1 deficiency leads to loss of homeostasis in human diploid somatic cells. Protein Cell 11:688–695

DOI

32
Li Z, Zhao S, Nelakanti RV, Lin K, Wu TP, Alderman MH, Guo C, Wang P, Zhang M, Min W(2020b) N6-methyladenine in DNA antagonizes SATB1 in early development. Nature 583:625–630

DOI

33
Liang D, Wang H, Song W, Xiong X, Zhang X, Hu Z, Guo H, Yang Z, Zhai S, Zhang LH(2016) The decreased N6-methyladenine DNA modification in cancer cells. Biochem Biophys Res Commun 480:120–125

DOI

34
Liang Z, Shen L, Cui X, Bao S, Geng Y, Yu G, Liang F, Xie S, Lu T, Gu X(2018) DNA N6-adenine methylation in Arabidopsis thaliana. Dev Cell 45:406–416

DOI

35
Liu J, Zhu Y, Luo GZ, Wang X, Yue Y, Wang X, Zong X, Chen K, Yin H, Fu Y(2016) Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun 7:13052

DOI

36
Liu B, Liu X, Lai W, Wang H(2017) Metabolically generated stable isotope-labeled deoxynucleoside code for tracing DNA N6-methyladenine in human cells. Anal Chem 89:6202–6209

DOI

37
Liu Q, Fang L, Yu G, Wang D, Le XC, Wang K(2019) Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat Commun 10:2449

DOI

38
Liu X, Lai W, Li Y, Chen S, Liu B, Zhang N, Mo J, Lyu C, Zheng J, Du YR(2021) N6-methyladenine is incorporated into mammalian genome by DNA polymerase. Cell Res 31:94–97

DOI

39
Lu M, Campbell JL, Boye E, Kleckner N(1994) SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413–426

DOI

40
Luo GZ, Wang F, Weng X, Chen K, Hao Z, Yu M, Deng X, Liu J, He C(2016) Characterization of eukaryotic DNA N6-methyladenine by a highly sensitive restriction enzyme-assisted sequencing. Nat Commun 7:11301

DOI

41
Luo C, Hajkova P, Ecker JR(2018a) Dynamic DNA methylation: in the right place at the right time. Science 361:1336–1340

DOI

42
Luo GZ, Hao Z, Luo L, Shen M, Sparvoli D, Zheng Y, Zhang Z, Weng X, Chen K, Cui Q(2018b) N6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA 06 biological sciences 0604 genetics. Genome Biol 19:200

43
Ma C, Niu R, Huang T, Shao LW, Peng Y, Ding W, Wang Y, Jia G, He C, Li CY(2019) N6-methyldeoxyadenine is a transgenerational epigenetic signal for mitochondrial stress adaptation. Nat Cell Biol 21:319–327

DOI

44
Mahdavi-Amiri Y, Chung Kim Chung K, Hili R(2021) Singlenucleotide resolution of: N6-adenine methylation sites in DNA and RNA by nitrite sequencing. Chem Sci 12:606–612

DOI

45
Marinus MG, Morris NR(1973) Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol 114:1143–1150

DOI

46
Marinus MG, Morris NR(1974) Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol 85:309–322

DOI

47
McIntyre ABR, Alexander N, Grigorev K, Bezdan D, Sichtig H, Chiu CY, Mason CE(2019) Single-molecule sequencing detection of N6-methyladenine in microbial reference materials. Nat Commun 10:579

DOI

48
Moore LD, Le T, Fan G(2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

DOI

49
Musheev MU, Baumgärtner A, Krebs L, Niehrs C(2020) The origin of genomic N 6-methyl-deoxyadenosine in mammalian cells. Nat Chem Biol 16:630–634

DOI

50
Nappi M, Hofer A, Balasubramanian S, Gaunt MJ(2020) Selective chemical functionalization at N6-methyladenosine residues in dna enabled by visible-light-mediated photoredox catalysis. J Am Chem Soc 142:21484–21492

DOI

51
Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Le XC, Luo F, Wang J(2019) DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35:4586–4595

DOI

52
O’Brown ZK, Boulias K, Wang J, Wang SY, O’Brown NM, Hao Z, Shibuya H, Fady PE, Shi Y, He C(2019) Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA. BMC Genomics 20:445

DOI

53
Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B(2017) Mapping DNA methylation with highthroughput nanopore sequencing. Nat Methods 14:411–413

DOI

54
Ratel D, Ravanat JL, Charles MP, Platet N, Breuillaud L, Lunardi J, Berger F, Wion D(2006) Undetectable levels of N6-methyl adenine in mouse DNA: cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett 580:3179–3184

DOI

55
Robbins-Manke JL, Zdraveski ZZ, Marinus M, Essigmann JM(2005) Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J Bacteriol 187:7027–7037

DOI

56
Sánchez-Romero MA, Cota I, Casadesús J(2015) DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 25:9–16

DOI

57
Schiffers S, Ebert C, Rahimoff R, Kosmatchev O, Steinbacher J, Bohne AV, Spada F, Michalakis S, Nickelsen J, Müller M(2017) Quantitative LC–MS provides no evidence for m6dA or m4dC in the genome of mouse embryonic stem cells and tissues. Angew Chem Int Ed 56:11268–11271

DOI

58
Schübeler D(2015) Function and information content of DNA methylation. Nature 517:321–326

DOI

59
Sheng X, Wang J, Guo Y, Zhang J, Luo J(2021) DNA N6-methyladenine (6mA) modification regulates drug resistance in triple negative breast cancer. Front Oncol 10:616098

DOI

60
Smith ZD, Meissner A(2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

DOI

61
Smith JD, Arber W, Kühnlein U(1972) Host specificity of DNA produced by Escherichia coli. XIV. the role of nucleotide methylation in in vivo B-specific modification. J Mol Biol 63:1–8

DOI

62
Sternberg N(1985) Evidence that adenine methylation influences DNA-protein interactions in Escherichia coli. J Bacteriol 164:490–493

DOI

63
Stoiber M, Quick J, Egan R, Eun Lee J, Celniker S, Neely R, Loman N, Pennacchio L, Brown J(2016) De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. bioRxiv. https://doi.org/10.1101/094672

DOI

64
Stott DI(1989) Immunoblotting and dot blotting. J Immunol Methods 119:153–187

DOI

65
Tian L-F, Liu Y-P, Chen L, Tang Q, Wu W, Sun W, Chen Z, Yan X-X(2020) Structural basis of nucleic acid recognition and 6mA demethylation by human ALKBH1. Cell Res 30:272–275

DOI

66
Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX(1968) 5-methylcytosine and 6-methylaminopurine in bacterial DNA. Nature 218:1066–1067

DOI

67
Wetzel C, Limbach PA(2016) Mass spectrometry of modified RNAs: recent developments. Analyst 141:16–23

DOI

68
Woodcock CB, Yu D, Hajian T, Li J, Huang Y, Dai N, Corrêa IR, Wu T, Vedadi M, Zhang X(2019) Human MettL3–MettL14 complex is a sequence-specific DNA adenine methyltransferase active on single-strand and unpaired DNA in vitro. Cell Discov 5:63

DOI

69
Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M(2016) DNA methylation on N6- adenine in mammalian embryonic stem cells. Nature 532:329–333

DOI

70
Xiao CL, Zhu S, He M, Chen D, Zhang Q, Chen Y, Yu G, Liu J, Xie SQ, Luo F(2018) N6-methyladenine DNA modification in the human genome. Mol Cell 71:306–318

DOI

71
Xie Q, Wu TP, Gimple RC, Li Z, Prager BC, Wu Q, Yu Y, Wang P, Wang Y, Gorkin DU(2018) N6-methyladenine DNA modification in glioblastoma. Cell 175:1228–1243

DOI

72
Yao B, Cheng Y, Wang Z, Li Y, Chen L, Huang L, Zhang W, Chen D, Wu H, Tang B(2017) DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 8:1122

DOI

73
Yao B, Li Y, Wang Z, Chen L, Poidevin M, Zhang C, Lin L, Wang F, Bao H, Jiao B(2018) Active N6-methyladenine demethylation by DMAD regulates gene expression by coordinating with polycomb protein in neurons. Mol Cell 71:848–857

DOI

74
Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J(2015) N6-methyladenine DNA modification in Drosophila. Cell 161:893–906

DOI

75
Zhang M, Yang S, Nelakanti R, Zhao W, Liu G, Li Z, Liu X, Wu T, Xiao A, Li H(2020a) Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA. Cell Res 30:197–210

DOI

76
Zhang Z, Hou Y, Wang Y, Gao T, Ma Z, Yang Y, Zhang P, Yi F, Zhan J, Zhang H(2020b) Regulation of adipocyte differentiation by METTL4, a 6 mA methylase. Sci Rep 10:8285

DOI

77
Zhang X, Blumenthal RM, Cheng X(2021) A role for N6-methyladenine in DNA damage repair. Trends Biochem Sci 46:175–183

DOI

78
Zhou C, Wang C, Liu H, Zhou Q, Liu Q, Guo Y, Peng T, Song J, Zhang J, Chen L(2018) Identification and analysis of adenine N6-methylation sites in the rice genome. Nat Plants 4:554–563

DOI

79
Zhu S, Beaulaurier J, Deikus G, Wu TP, Strahl M, Hao Z, Luo G, Gregory JA, Chess A, He C(2018) Mapping and characterizing N6-methyladenine in eukaryotic genomes using singlemolecule real-time sequencing. Genome Res 28:1067–1078

DOI

Outlines

/