REVIEW

How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?

  • Ruyi Xu 1,2 ,
  • Yi Li 1,2 ,
  • Yang Liu 1,2 ,
  • Jianwei Qu 1,2 ,
  • Wen Cao 1,2 ,
  • Enfan Zhang 1,2 ,
  • Jingsong He , 1,2 ,
  • Zhen Cai , 1,2
Expand
  • 1. Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
  • 2. Institution of Hematology, Zhejiang University, Hangzhou 310006, China

Received date: 09 Apr 2020

Accepted date: 11 May 2020

Published date: 15 Dec 2020

Copyright

2020 The Author(s) 2020

Abstract

Cytokines are secreted by various cell types and act as critical mediators in many physiological processes, including immune response and tumor progression. Cytokines production is precisely and timely regulated by multiple mechanisms at different levels, ranging from transcriptional to post-transcriptional and posttranslational processes. Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), a potent immunosuppressive protein, was first described as a transcription factor in monocytes treated with monocyte chemoattractant protein-1 (MCP-1) and subsequently found to possess intrinsic RNase and deubiquitinase activities. MCPIP1 tightly regulates cytokines expression via various functions. Furthermore, cytokines such as interleukin 1 beta (IL-1B) and MCP-1 and inflammatory cytokines inducer lipopolysaccharide (LPS) strongly induce MCPIP1 expression. Mutually regulated MCPIP1 and cytokines form a complicated network in the tumor environment. In this review, we summarize how MCPIP1 and cytokines reciprocally interact and elucidate the effect of the network formed by these components in cancer-related immunity with aim of exploring potential clinical benefits of their mutual regulation.

Cite this article

Ruyi Xu , Yi Li , Yang Liu , Jianwei Qu , Wen Cao , Enfan Zhang , Jingsong He , Zhen Cai . How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein & Cell, 2020 , 11(12) : 881 -893 . DOI: 10.1007/s13238-020-00739-1

1
Algra AM, Rothwell PM (2012) Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 13(5):518–527

DOI

2
Boratyn E, Nowak I, Horwacik I, Durbas M, Mistarz A, Kukla M, Kaczówka P, Łastowska M, Jura J, Rokita H (2016) Monocyte chemoattractant protein-induced protein 1 overexpression modulates transcriptome, including microRNA, in human neuroblastoma cells. J Cell Biochem 117(3):694–707

DOI

3
Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, Zhong B, de Boer CJ, Tabernero J, Calvo E (2015) Carlumab, an anti-CC chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 10(1):111–123

DOI

4
Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48

DOI

5
Coffelt SB, De Visser KE (2014) Cancer: inflammation lights the way to metastasis. Nature 507(7490):48–49

DOI

6
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

DOI

7
Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR (2009) Src homology 2 domain–containing inositol-5-phosphatase and CCAAT enhancer-binding protein β are targeted by miR-155 in B cells of Eμ-MiR-155 transgenic mice. Blood JAmSoc Hematol 114(7):1374–1382

DOI

8
Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumorpromoting chronic inflammation: a magic bullet? Science 339 (6117):286–291

DOI

9
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2):351–361

DOI

10
Dhamija S, Winzen R, Doerrie A, Behrens G, Kuehne N, Schauerte C, Neumann E, Dittrich-Breiholz O, Kracht M, Holtmann H (2013) Interleukin-17 (IL-17) and IL-1 activate translation of overlapping sets of mRNAs, including that of the negative regulator of inflammation, MCPIP1[J]. J Biol Chem 288(26):19250–19259

DOI

11
Diakos CI, Charles KA, McMillan DC, Clarke SJ (2014) Cancerrelated inflammation and treatment effectiveness. Lancet Oncol 15(11):e493–e503

DOI

12
Dobosz E, Wilamowski M, Lech M, Bugara B, Jura J, Potempa J, Koziel J (2016) MCPIP-1, alias regnase-1, controls epithelial inflammation by posttranscriptional regulation of IL-8 production [J]. J Innate Immun 8(6):564–578

DOI

13
Dysthe M, Parihar R (2020) Myeloid-derived suppressor cells in the tumor microenvironment. In: Tumor microenvironment 2020. Springer, Cham, pp 117–140

DOI

14
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759

DOI

15
Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18(1):70

DOI

16
Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. In: Seminars in oncology. WB Saunders, vol 29(6), pp 15–18

DOI

17
Fu M, Blackshear PJ (2017) RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol 17(2):130

DOI

18
Galdiero MR, Marone G, Mantovani A (2018) Cancer inflammation and cytokines. Cold Spring Harb Perspect Biol 10(8):a028662

DOI

19
Garderet L, Kuhnowski F, Berge B, Roussel M, Escoffre-Barbe M, Lafon I, Facon T, Leleu X, Karlin L, Perrot A (2018) Pomalidomide, cyclophosphamide, and dexamethasone for relapsed multiple myeloma. Blood 132(24):2555–2563

DOI

20
Garg AV, Amatya N, Chen K, Cruz JA, Grover P, Whibley N, Conti HR, Mir GH, Sirakova T, Childs EC (2015) MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43(3):475–487

DOI

21
Gierach GL, Lacey JV, Schatzkin A, Leitzmann MF, Richesson D, Hollenbeck AR, Brinton LA (2008) Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health–AARP Diet and Health Study. Breast Cancer Res 10(2):R38

DOI

22
Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

DOI

23
Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow-derived cells. Science 306 (5701):1568–1571

DOI

24
Huang S, Miao R, Zhou Z, Wang T, Liu J, Liu G, Chen YE, Xin HB, Zhang J, Fu M (2013) MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cell Signal 25(5):1228–1234

DOI

25
Huang S, Liu S, Fu JJ, Wang TT, Yao X, Kumar A, Liu G, Fu M (2015) Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J Biol Chem 290(34):20782–20792

DOI

26
Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T, Kuniyoshi K, Satoh T, Saitoh T, Matsushita M, Standley DM (2011) The IκB kinase complex regulates the stability of cytokineencoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nat Immunol 12(12):1167

DOI

27
Jeltsch KM, Hu D, Brenner S, Zöller J, Heinz GA, Nagel D, Vogel KU, Rehage N, Warth SC, Edelmann SL (2014) Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T H 17 differentiation. Nat Immunol 15(11):1079

DOI

28
Jiang H, Lv X, Lei X, Yang Y, Yang X, Jiao J (2016) Immune regulator MCPIP1 modulates TET expression during early neocortical development. Stem cell Rep 7(3):439–453

DOI

29
Kapoor N, Niu J, Saad Y, Kumar S, Sirakova T, Becerra E, Li X, Kolattukudy PE (2015) Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol 194(12):6011–6023

DOI

30
Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

DOI

31
Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, Mizgalska D, Palmer K, Rokita H, Sharrocks AD, Jura J (2010) Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol 11(1):14

DOI

32
Leggas M, Kuo KL, Robert F, Cloud G, Deshazo M, Zhang R, Li M, Wang H, Davidson S, Rinehart J (2009) Intensive anti-inflammatory therapy with dexamethasone in patients with non-small cell lung cancer: effect on chemotherapy toxicity and efficacy. Cancer Chemother Pharmacol 63(4):731–743

DOI

33
Li M, Cao W, Liu H, Zhang W, Liu X, Cai Z, Guo J, Wang X, Hui Z, Zhang H (2012) MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway[J]. PLoS One 7(11): e49841

DOI

34
Liang J, Wang J, Azfer A, Song W, Tromp G, Kolattukudy PE, Fu M (2008) A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 283(10):6337–6346

DOI

35
Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, Kolattukudy PE, Fu M (2010) MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. J Exp Med 207(13):2959–2973

DOI

36
Lu W, Ning H, Gu L, Peng H, Wang Q, Hou R, Fu M, Hoft DF, Liu J (2016) MCPIP1 selectively destabilizes transcripts associated with an antiapoptotic gene expression program in breast cancer cells that can elicit complete tumor regression. Cancer Res 76(6):1429–1440

DOI

37
Maman S, Witz IP (2018) A history of exploring cancer in context. Nat Rev Drug Discov 17(3):13–30

DOI

38
Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

DOI

39
Marcuzzi E, Angioni R, Molon B, Calì B (2019) Chemokines and chemokine receptors: orchestrating tumor metastasization. Int J Mol Sci 20(1):96

DOI

40
Marona P, Górka J, Mazurek Z, Wilk W, Rys J, Majka M, Jura J, Miekus K (2017) MCPIP1 downregulation in clear cell renal cell carcinoma promotes vascularization and metastatic progression. Cancer Res 77(18):4905–4920

DOI

41
Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H (2009) Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458(7242):1185–1190

DOI

42
Miao R, Huang S, Zhou Z, Quinn T, Van Treeck B, Nayyar T, Dim D, Jiang Z, Papasian CJ, Eugene Chen Y (2013) Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol Cell Biol 91(5):368–376

DOI

43
Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, Uehata T, Tartey S, Akira S, Suzuki Y (2015) Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161(5):1058–1073

DOI

44
Mizgalska D, Węgrzyn P, Murzyn K, Kasza A, Koj A, Jura J, Jarzab B, Jura J (2009) Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA. FEBS J 276(24):7386–7399

DOI

45
Monin L, Gudjonsson JE, Childs EE, Amatya N, Xing X, Verma AH, Coleman BM, Garg AV, Killeen M, Mathers A (2017) MCPIP1/regnase-1 restricts IL-17A–and IL-17C–dependent skin inflammation. J Immunol 198(2):767–775

DOI

46
Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 10 (79):541–566

DOI

47
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

DOI

48
Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A (1998) The human Toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor–associated factor 6 (TRAF6). J Exp Med 187(12):2097–2101

DOI

49
Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283(21):14542–14551

DOI

50
Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T, Wu J, Fu M, Wu ZH (2013) USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. The EMBO journal. 32(24):3206–3219

DOI

51
O’Boyle G, Brain JG, Kirby JA, Ali S (2007) Chemokine-mediated inflammation: identification of a possible regulatory role for CCR2. Mol Immunol 44(8):1944–1953

DOI

52
Oh YT, Qian G, Deng J, Sun SY (2018) Monocyte chemotactic protein-induced protein-1 enhances DR5 degradation and negatively regulates DR5 activation-induced apoptosis through its deubiquitinase function. Oncogene 37(25):3415–3425

DOI

53
Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506

DOI

54
Prach AT, MacDonald TA, Hopwood DA, Johnston DA (1997) Increasing incidence of Barrett’s oesophagus: education, enthusiasm, or epidemiology? The Lancet 350(9082):933

DOI

55
Qi Y, Liang J, She ZG, Cai Y, Wang J, Lei T, Stallcup WB, Fu M (2010) MCP-induced protein 1 suppresses TNFα-induced VCAM-1 expression in human endothelial cells[J]. FEBS Lett 584(14):3065–3072

DOI

56
Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, Van Dongen S, Grocock RJ, Das PP, Miska EA (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611

DOI

57
Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet. 379(9826):1591–1601

DOI

58
Roy A, Zhang M, Saad Y, Kolattukudy PE (2013) Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am J Physiol Cell Physiol 305(10):C1021–C1032

DOI

59
Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O’Brien S, Moon EK, Cantu E, Danet-Desnoyers G, Ra HJ (2019) Human tumor-associated monocytes/macrophages and their regulation of Tcell responses in early-stage lung cancer. Sci Transl Med 11(479):eaat1500

DOI

60
Skalniak L, Mizgalska D, Zarebski A, Wyrzykowska P, Koj A, Jura J (2009) Regulatory feedback loop between NF-κB and MCP-1-induced protein 1 RNase. FEBS J 276(20):5892–5905

DOI

61
Skalniak L, Koj A, Jura J (2013) Proteasome inhibitor MG-132 induces MCPIP 1 expression. FEBS J 280(11):2665–2674

DOI

62
Sønder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U (2011) IL-17-induced NF-κB activation via CIKS/Act1 physiologic significance and signaling mechanisms. J Biol Chem 286(15):12881–12890

DOI

63
Stoeltzing O, Meric-Bernstam F, Ellis LM (2006) Intracellular signaling in tumor and endothelial cells: the expected and yet again, the unexpected. Cancer Cell 10(2):89–91

DOI

64
Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K, Miyazono K (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44(3):424–436

DOI

65
Takeuchi O (2018) Endonuclease regnase-1/monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip Rev RNA 9(1):e1449

DOI

66
Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley DM (2013) Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153(5):1036–1049

DOI

67
Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci 100 (5):2645–2650

DOI

68
Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455

DOI

69
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414

DOI

70
Xu J, Peng W, Sun Y, Wang X, Xu Y, Li X, Gao G, Rao Z (2012a) Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res 40(14):6957–6965

DOI

71
Xu J, Fu S, Peng W, Rao Z (2012b) MCP-1-induced protein-1, an immune regulator. Protein Cell 3(12):903–910

DOI

72
Xu R, Li Y, Yan H, Zhang E, Huang X, Chen Q, Chen J, Qu J, Liu Y, He J (2019) CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis 10(10):1–7

DOI

73
Yao H, Ma R, Yang L, Hu G, Chen X, Duan M, Kook Y, Niu F, Liao K, Fu M (2014) MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun 5(1):1–2

DOI

74
Zheng Y, Yang J, Qian J, Qiu P, Hanabuchi S, Lu Y, Wang Z, Liu Z, Li H, He J (2013) PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 27(3):702–710

DOI

75
Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98(9):1177–1185

DOI

Outlines

/