REVIEW

Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer

  • Jing Zhang 1 ,
  • Peter ten Dijke , 1 ,
  • Manfred Wuhrer 2 ,
  • Tao Zhang 2
Expand
  • 1. Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
  • 2. Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands

Received date: 24 Mar 2020

Accepted date: 29 May 2020

Published date: 15 Feb 2021

Copyright

2020 The Author(s) 2020

Abstract

Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-tomesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.

Cite this article

Jing Zhang , Peter ten Dijke , Manfred Wuhrer , Tao Zhang . Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer[J]. Protein & Cell, 2021 , 12(2) : 89 -106 . DOI: 10.1007/s13238-020-00741-7

1
Albertsen PC (2018) Prostate cancer screening with prostatespecific antigen: where are we going? Cancer 124:453–455

DOI

2
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan HY, Shen DL, Russell CC (2020) A direct fluorescent activity assay for glycosyltransferases enables convenient high-throughput screening: application to O-GlcNAc transferase. Angew Chem Int Ed Engl 59:1–11

DOI

3
Andergassen U, Liesche F, Kolbl AC, Ilmer M, Hutter S, Friese K, Jeschke U (2015) Glycosyltransferases as markers for early tumorigenesis. Biomed Res Int 2015(792672):1–11

DOI

4
Andres JL, DeFalcis D, Noda M, Massague J (1992) Binding of two growth factor families to separate domains of the proteoglycan betaglycan. J Biol Chem 267:5927–5930

5
Auclin E, Andre T, Taieb J, Benetkiewicz M, de Gramont A, Vernerey D (2018) Low-level postoperative carcinoembryonic antigen improves survival outcomes stratification in patients with stage II colon cancer treated with standard adjuvant treatments. Eur J Cancer 97:55–56

DOI

6
Ballehaninna UK, Chamberlain RS (2012) The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J Gastrointest Oncol 3:105–119

7
Bassaganas S, Carvalho S, Dias AM, Perez-Garay M, Ortiz MR, Figueras J, Reis CA, Pinho SS, Peracaula R (2014) Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS ONE 9(e98595):1–14

DOI

8
Batlle E, Massague J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50:924–940

DOI

9
Boscher C, Dennis JW, Nabi IR (2011) Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23:383–392

DOI

10
Breimer ME, Saljo K, Barone A, Teneberg S (2017) Glycosphingolipids of human embryonic stem cells. Glycoconj J 34:713–723

DOI

11
Brockhausen I, Stanley P (2015) O-GalNAc glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York, pp 113–123

12
Brunner AM, Lioubin MN, Marquardt H, Malacko AR, Wang WC, Shapiro RA, Neubauer M, Cook J, Madisen L, Purchio AF (1992) Site-directed mutagenesis of glycosylation sites in the transforming growth factor-beta 1 (TGFβ1) and TGFβ2 (414) precursors and of cysteine residues within mature TGFβ1: effects on secretion and bioactivity. Mol Endocrinol 6:1691–1700

DOI

13
Budi EH, Duan D, Derynck R (2017) Transforming growth factor-β receptors and smads: regulatory complexity and functional versatility. Trends Cell Biol 27:658–672

DOI

14
Chaudhary PM, Toraskar S, Yadav R, Hande A, Yellin RA, Kikkeri R (2019) Multivalent sialosides: a tool to explore the role of sialic acids in biological processes. Chem Asian J 14:1344–1355

DOI

15
Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176

DOI

16
Cheng J, Wang W, Zhang Y, Liu X, Li M, Wu Z, Liu Z, Lv Y, Wang B (2014) Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: systematic review and meta-analysis. PLoS ONE 9(e87011):1–8

DOI

17
Colak S, Ten Dijke P (2017) Targeting TGF-β signaling in cancer. Trends Cancer 3:56–71

DOI

18
Couto N, Davlyatova L, Evans CA, Wright PC (2018) Application of the broadband collision-induced dissociation (bbCID) mass spectrometry approach for protein glycosylation and phosphorylation analysis. Rapid Commun Mass Spectrom 32:75–85

DOI

19
D’Angelo G, Capasso S, Sticco L, Russo D (2013) Glycosphingolipids: synthesis and functions. FEBS J 280:6338–6353

DOI

20
Dennis JW, Nabi IR, Demetriou M (2009) Metabolism, cell surface organization, and disease. Cell 139:1229–1241

DOI

21
Derynck R, Muthusamy BP, Saeteurn KY (2014) Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol 31:56–66

DOI

22
Derynck R, Weinberg RA (2019) EMT and cancer: more than meets the eye. Dev Cell 49:313–316

DOI

23
Ding Y, Gelfenbeyn K, Freire-de-Lima L, Handa K, Hakomori SI (2012) Induction of epithelial-mesenchymal transition with O-glycosylated oncofetal fibronectin. FEBS Lett 586:1813–1820

DOI

24
Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G (2019) Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res 12(28):1–9

DOI

25
Dong X, Hudson NE, Lu C, Springer TA (2014) Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat Struct Mol Biol 21:1091–1096

DOI

26
Du J, Hong S, Dong L, Cheng B, Lin L, Zhao B, Chen YG, Chen X (2015) Dynamic sialylation in transforming growth factor-beta (TGF-β)-induced epithelial to mesenchymal transition. J Biol Chem 290:12000–12013

DOI

27
Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488

DOI

28
Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, Lopez-Casillas F (2001) Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-β superfamily. Specialized binding regions for transforming growth factor-β and inhibin A. J Biol Chem 276:14588–14596

DOI

29
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall’Olio F (2018) Glycosylation as a main regulator of growth and death factor receptors signaling. Int J Mol Sci 19:1–28

DOI

30
Freire-de-Lima L (2014) Sweet and sour: the impact of differential glycosylation in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 4(59):1–10

DOI

31
Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K, Hakomori SI (2011) Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci USA 108:17690–17695

DOI

32
Furukawa K, Ohmi Y, Ohkawa Y, Bhuiyan RH, Zhang P, Tajima O, Hashimoto N, Hamamura K, Furukawa K (2019) New era of research on cancer-associated glycosphingolipids. Cancer Sci 110:1544–1551

DOI

33
Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542

DOI

34
Gargano AFG, Schouten O, van Schaick G, Roca LS, van den Berg-Verleg JH, Haselberg R, Akeroyd M, Abello N, Somsen GW (2020) Profiling of a high mannose-type N-glycosylated lipase using hydrophilic interaction chromatography-mass spectrometry. Anal Chim Acta 1109:69–77

DOI

35
Glinka Y, Prud’homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor β1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310

DOI

36
Glinka Y, Stoilova S, Mohammed N, Prud’homme GJ (2011) Neuropilin-1 exerts co-receptor function for TGF-β1 on the membrane of cancer cells and enhances responses to both latent and active TGF-β. Carcinogenesis 32:613–621

DOI

37
Gomes C, Osorio H, Pinto MT, Campos D, Oliveira MJ, Reis CA (2013) Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PLoS One 8(e66737):1–13

DOI

38
Gotoh T, Iwahana H, Kannan S, Marei RG, Mousa H, Elgamal M, Souchelnytskyi S (2020) Glycosylation is a novel TGFβ1-independent post-translational modification of Smad2. Biochem Biophys Res Commun 521:1010–1016

DOI

39
Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C, Yang J, Han F, Lu X, Yu W (2010) GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res 70:6344–6351

DOI

40
Guan F, Handa K, Hakomori SI (2009) Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci USA 106:7461–7466

DOI

41
Guo HF, Vander Kooi CW (2015) Neuropilin functions as an essential cell surface receptor. J Biol Chem 290:29120–29126

DOI

42
Haltiwanger RS, Wells L, Freeze HH, Stanley P (2015) Other classes of eukaryotic glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH et al (eds) Essentials of glycobiology, 3rd edn. Springer, New York, pp 151–160

43
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

DOI

44
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

DOI

45
Hao Y, Baker D, Ten Dijke P (2019) TGF-β-mediated epithelialmesenchymal transition and cancer metastasis. Int J Mol Sci 20:1–34

DOI

46
Heldin CH (2004) Development and possible clinical use of antagonists for PDGF and TGF-β. Ups J Med Sci 109:165–178

DOI

47
Heldin CH, Miyazono K, ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

DOI

48
Heldin CH, Moustakas A (2016) Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol 8:1–33

DOI

49
Hill CS (2016) Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol 8:1–17

DOI

50
Hirakawa M, Takimoto R, Tamura F, Yoshida M, Ono M, Murase K, Sato Y, Osuga T, Sato T, Iyama S (2014) Fucosylated TGF-β receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells. Br J Cancer 110:156–163

DOI

51
Huanna T, Tao Z, Xiangfei W, Longfei A, Yuanyuan X, Jianhua W, Cuifang Z, Manjing J, Wenjing C, Shaochuan Q (2015) GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7. Mol Carcinog 54:1159–1171

DOI

52
Hubmacher D, Reinhardt DP (2009) One more piece in the fibrillin puzzle. Structure 17:635–636

DOI

53
Hyytiainen M, Penttinen C, Keski-Oja J (2004) Latent TGF-β binding proteins: extracellular matrix association and roles in TGF-β activation. Crit Rev Clin Lab Sci 41:233–264

DOI

54
Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

DOI

55
Jenkins LM, Horst B, Lancaster CL, Mythreye K (2018) Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 39:124–136

DOI

56
Kamada Y, Mori K, Matsumoto H, Kiso S, Yoshida Y, Shinzaki S, Hiramatsu N, Ishii M, Moriwaki K, Kawada N (2012) N-Acetylglucosaminyltransferase V regulates TGF-β response in hepatic stellate cells and the progression of steatohepatitis. Glycobiology 22:778–787

DOI

57
Katsuno Y, Lamouille S, Derynck R (2013) TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25:76–84

DOI

58
Kim SJ, Chung TW, Choi HJ, Kwak CH, Song KH, Suh SJ, Kwon KM, Chang YC, Park YG, Chang HW (2013) Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells. Biochem J 449:241–251

DOI

59
Kim YW, Park J, Lee HJ, Lee SY, Kim SJ (2012) TGF-β sensitivity is determined by N-linked glycosylation of the type II TGF-β receptor. Biochem J 445:403–411

DOI

60
Kirkbride KC, Ray BN, Blobe GC (2005) Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem Sci 30:611–621

DOI

61
Krasnova L, Wong CH (2016) Understanding the chemistry and biology of glycosylation with glycan synthesis. Annu Rev Biochem 85:599–630

DOI

62
Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R (2012) TGF-β-induced activation of mTOR complex 2 drives epithelialmesenchymal transition and cell invasion. J Cell Sci 125:1259–1273

DOI

63
Lange T, Samatov TR, Tonevitsky AG, Schumacher U (2014) Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydr Res 389:39–45

DOI

64
Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134

DOI

65
Laughlin ST, Bertozzi CR (2009) Imaging the glycome. Proc Natl Acad Sci USA 106:12–17

DOI

66
Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO J 23:4018–4028

DOI

67
Lee J, Ballikaya S, Schonig K, Ball CR, Glimm H, Kopitz J, Gebert J (2013) Transforming growth factor β receptor 2 (TGFBR2) changes sialylation in the microsatellite unstable (MSI) Colorectal cancer cell line HCT116. PLoS ONE 8(e57074):1–10

DOI

68
Lee J, Warnken U, Schnolzer M, Gebert J, Kopitz J (2015) A new method for detection of tumor driver-dependent changes of protein sialylation in a colon cancer cell line reveals nectin-3 as TGFBR2 target. Protein Sci 24:1686–1694

DOI

69
Leerapun A, Suravarapu SV, Bida JP, Clark RJ, Sanders EL, Mettler TA, Stadheim LM, Aderca I, Moser CD, Nagorney DM (2007) The utility of Lens culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. Clin Gastroenterol Hepatol 5:394–402

DOI

70
Li F, Lin B, Hao Y, Li Y, Liu J, Cong J, Zhu L, Liu Q, Zhang S (2010) Lewis Y promotes growth and adhesion of ovarian carcinomaderived RMG-I cells by upregulating growth factors. Int J Mol Sci 11:3748–3759

DOI

71
Li FF, Liu JJ, Liu DW, Lin B, Hao YY, Cong JP, Zhu LC, Gao S, Zhang SL, Iwamori M (2012) Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells. Int J Oncol 40:1196–1202

DOI

72
Li X, Wang X, Tan Z, Chen S, Guan F (2016) Role of glycans in cancer cells undergoing epithelial-mesenchymal transition. Front Oncol 6(33):1–5

DOI

73
Lin H, Wang D, Wu T, Dong C, Shen N, Sun Y, Sun Y, Xie H, Wang N, Shan L (2011) Blocking core fucosylation of TGF-β1 receptors downregulates their functions and attenuates the epithelialmesenchymal transition of renal tubular cells. Am J Physiol Renal Physiol 300:F1017–1025

DOI

74
Lin WR, Hsu CW, Chen YC, Chang ML, Liang KH, Huang YH, Yeh CT (2014) GALNT14 genotype, alpha-fetoprotein and therapeutic side effects predict post-chemotherapy survival in patients with advanced hepatocellular carcinoma. Mol Clin Oncol 2:630–640

DOI

75
Lindahl U, Couchman J, Kimata K, Esko JD (2015) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York, pp 207–221

76
Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH, Lai HS, Wu YM, Huang MC (2014a) C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS ONE 9(e94995):1–9

DOI

77
Liu T, Zhang S, Chen J, Jiang K, Zhang Q, Guo K, Liu Y (2014b) The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis. PLoS ONE 9(e107941):1–13

DOI

78
Lopez-Casillas F, Cheifetz S, Doody J, Andres JL, Lane WS, Massague J (1991) Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-β receptor system. Cell 67:785–795

DOI

79
Lopez AR, Cook J, Deininger PL, Derynck R (1992) Dominant negative mutants of transforming growth factor-β1 inhibit the secretion of different transforming growth factor-beta isoforms. Mol Cell Biol 12:1674–1679

DOI

80
Lu J, Isaji T, Im S, Fukuda T, Hashii N, Takakura D, Kawasaki N, Gu J (2014) beta-Galactoside alpha2,6-sialyltranferase 1 promotes transforming growth factor-β-mediated epithelial-mesenchymal transition. J Biol Chem 289:34627–34641

DOI

81
Lu W, Kang Y (2019) Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell 49:361–374

DOI

82
Luo K (2017) Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol 9:1–28

DOI

83
Lux A, Gallione CJ, Marchuk DA (2000) Expression analysis of endoglin missense and truncation mutations: insights into protein structure and disease mechanisms. Hum Mol Genet 9:745–755

DOI

84
Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ (2012) Critical role of O-linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem 287:11070–11081

DOI

85
Ma J, Hart GW (2014) O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 11(8):1–16

DOI

86
Marsico G, Russo L, Quondamatteo F, Pandit A (2018) Glycosylation and integrin regulation in cancer. Trends Cancer 4:537–552

DOI

87
Massague J (2000) How cells read TGF-β signals. Nat Rev Mol Cell Biol 1:169–178

DOI

88
Massague J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630

DOI

89
Matsumoto K, Yokote H, Arao T, Maegawa M, Tanaka K, Fujita Y, Shimizu C, Hanafusa T, Fujiwara Y, Nishio K (2008) N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci 99:1611–1617

DOI

90
McMahon GA, Dignam JD, Gentry LE (1996) Structural characterization of the latent complex between transforming growth factor β1 and β1-latency-associated peptide. Biochem J 313(Pt 1):343–351

DOI

91
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

DOI

92
Mendonsa AM, Na TY, Gumbiner BM (2018) E-cadherin in contact inhibition and cancer. Oncogene 37:4769–4780

DOI

93
Meurer S, Wimmer AE, Leur EV, Weiskirchen R (2019) Endoglin trafficking/exosomal targeting in liver cells depends on N-glycosylation. Cells 8:1–24

DOI

94
Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q, Yu W (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta 1812:514–519

DOI

95
Miyazono K, Heldin CH (1989) Role for carbohydrate structures in TGF-β1 latency. Nature 338:158–160

DOI

96
Miyazono K, Thyberg J, Heldin CH (1992) Retention of the transforming growth factor-β1 precursor in the Golgi complex in a latent endoglycosidase H-sensitive form. J Biol Chem 267:5668–5675

97
Moustakas A, Heldin CH (2016) Mechanisms of TGFβ-induced epithelial-mesenchymal transition. J Clin Med 5:63

DOI

98
Mukherjee P, Faber AC, Shelton LM, Baek RC, Chiles TC, Seyfried TN (2008) Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J Lipid Res 49:929–938

DOI

99
Nagae M, Kizuka Y, Mihara E, Kitago Y, Hanashima S, Ito Y, Takagi J, Taniguchi N, Yamaguchi Y (2018) Structure and mechanism of cancer-associated N-acetylglucosaminyl-transferase-V. Nat Commun 9(3380):1–12

DOI

100
Nickel J, Ten Dijke P, Mueller TD (2018) TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 50:12–36

DOI

101
O’Brien DP, Sandanayake NS, Jenkinson C, Gentry-Maharaj A, Apostolidou S, Fourkala EO, Camuzeaux S, Blyuss O, Gunu R, Dawnay A (2015) Serum CA19-9 is significantly upregulated up to 2 years before diagnosis with pancreatic cancer: implications for early disease detection. Clin Cancer Res 21:622–631

DOI

102
Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

DOI

103
Pellet-Many C, Frankel P, Jia H, Zachary I (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226

DOI

104
Pinho SS, Figueiredo J, Cabral J, Carvalho S, Dourado J, Magalhaes A, Gartner F, Mendonfa AM, Isaji T, Gu J (2013) E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta 1830:2690–2700

DOI

105
Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555

DOI

106
Pinho SS, Reis CA, Paredes J, Magalhaes AM, Ferreira AC, Figueiredo J, Xiaogang W, Carneiro F, Gartner F, Seruca R (2009) The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet 18:2599–2608

DOI

107
Priglinger CS, Obermann J, Szober CM, Merl-Pham J, Ohmayer U, Behler J, Gruhn F, Kreutzer TC, Wertheimer C, Geerlof A (2016) Epithelial-to-mesenchymal transition of RPE cells in vitro confers increased beta1,6-N-glycosylation and increased susceptibility to galectin-3 binding. PLoS ONE 11(e0146887):1–25

DOI

108
Purchio AF, Cooper JA, Brunner AM, Lioubin MN, Gentry LE, Kovacina KS, Roth RA, Marquardt H (1988) Identification of mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-β1 precursor. J Biol Chem 263:14211–14215

109
Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

DOI

110
Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15:346–366

DOI

111
Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB (2015) Latent TGF-β-binding proteins. Matrix Biol 47:44–53

DOI

112
Robertson IB, Rifkin DB (2016) Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harb Perspect Biol 8:1–25

DOI

113
Rodrigues JG, Balmana M, Macedo JA, Pocas J, Fernandes A, de-Freitas-Junior JCM, Pinho SS, Gomes J, Magalhaes A, Gomes C (2018) Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 333:46–57

DOI

114
Sarkar TR, Battula VL, Werden SJ, Vijay GV, Ramirez-Pena EQ, Taube JH, Chang JT, Miura N, Porter W, Sphyris N (2015) GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 34:2958–2967

DOI

115
Schnaar RL, Kinoshita T (2015) Glycosphingolipids. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, Darvill AG, Kinoshita T, Packer NH et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York, pp 125–135

116
Sha X, Brunner AM, Purchio AF, Gentry LE (1989) Transforming growth factor β1: importance of glycosylation and acidic proteases for processing and secretion. Mol Endocrinol 3:1090–1098

DOI

117
Takeuchi H, Haltiwanger RS (2014) Significance of glycosylation in Notch signaling. Biochem Biophys Res Commun 453:235–242

DOI

118
Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51

DOI

119
ten Dijke P, Goumans MJ, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11:79–89

DOI

120
Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB (2017) FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res 19(111):1–16

DOI

121
van Kooyk Y, Kalay H, Garcia-Vallejo JJ (2013) Analytical tools for the study of cellular glycosylation in the immune system. Front Immunol 4(451):1–6

DOI

122
Venkatachalam MA, Weinberg JM (2013) New wrinkles in old receptors: core fucosylation is yet another target to inhibit TGF-β signaling. Kidney Int 84:11–14

DOI

123
Ventura E, Weller M, Macnair W, Eschbach K, Beisel C, Cordazzo C, Claassen M, Zardi L, Burghardt I (2018) TGF-β induces oncofetal fibronectin that, in turn, modulates TGF-β superfamily signaling in endothelial cells. J Cell Sci 131:209619

DOI

124
Wang M, Zhu J, Lubman DM, Gao C (2019) Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 57:407–416

DOI

125
Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M (2005) Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc Natl Acad Sci USA 102:15791–15796

DOI

126
Wu MH, Chen YL, Lee KH, Chang CC, Cheng TM, Wu SY, Tu CC, Tsui WL (2017) Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β-and PDGF-like signals in hepatic stellate cells. Sci Rep 7(11006):1–16

DOI

127
Xu P, Liu J, Derynck R (2012a) Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 586:1871–1884

DOI

128
Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012b) Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor beta1 (TGF-β1) in epithelial cell lines. J Biol Chem 287:16563–16574

DOI

129
Xu Y, Uddin N, Wagner GK (2018) Covalent probes for carbohydrate-active enzymes: from glycosidases to glycosyltransferases. Methods Enzymol 598:237–265

DOI

130
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G (2020) Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 7:131

DOI

131
Yang Y, Dignam JD, Gentry LE (1997) Role of carbohydrate structures in the binding of β1-latency-associated peptide to ligands. Biochemistry 36:11923–11932

DOI

132
Yu L, Hebert MC, Zhang YE (2002) TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 21:3749–3759

DOI

133
Zhang H, Meng F, Wu S, Kreike B, Sethi S, Chen W, Miller FR, Wu G (2011) Engagement of I-branching {beta}-1,6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-β signaling. Cancer Res 71:4846–4856

DOI

134
Zhang L, Luo S, Zhang B (2016) The use of lectin microarray for assessing glycosylation of therapeutic proteins. MAbs 8:524–535

DOI

135
Zhang YE (2017) Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol 9:1–18

DOI

136
Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, Kariya Y, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) Deletion of core fucosylation on α3β1 integrin down-regulates its functions. J Biol Chem 281:38343–38350

DOI

137
Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, Gu J, Taniguchi N (2008) Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 275:1939–1948

DOI

Outlines

/