RESEARCH ARTICLE

Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in

  • Bohong Chen 1 ,
  • Shengcheng Deng 1 ,
  • Tianyu Ge 1 ,
  • Miaoman Ye 1 ,
  • Jianping Yu 1 ,
  • Song Lin 1 ,
  • Wenbin Ma 1 ,
  • Zhou Songyang , 1,2,3
Expand
  • 1. Sun Yat-sen Memorial Hospital, Sun Yat-sen University; MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
  • 2. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
  • 3. Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

Received date: 20 Nov 2019

Accepted date: 19 Feb 2020

Published date: 15 Sep 2020

Copyright

2020 The Author(s)

Abstract

In mammalian cells, long noncoding RNAs (lncRNAs) form complexes with proteins to execute various biological functions such as gene transcription, RNA processing and other signaling activities. However, methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited. Here, we report the development of CERTIS (CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System) to visualize and isolate endogenous lncRNA, by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR/Cas9 technology. In this study, we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1. In addition, CERTIS displayed superior performance on both shortand long-term tracking of NEAT1 dynamics in live cells. We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors. Moreover, RNA Immunoprecipitation (RIP) of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle. Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.

Cite this article

Bohong Chen , Shengcheng Deng , Tianyu Ge , Miaoman Ye , Jianping Yu , Song Lin , Wenbin Ma , Zhou Songyang . Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in[J]. Protein & Cell, 2020 , 11(9) : 641 -660 . DOI: 10.1007/s13238-020-00706-w

1
Bae S, Kweon J, Kim HS, Kim J (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706

DOI

2
Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA (2017) mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Methods 14:53–56

DOI

3
Cao M, Zhao J, Hu G (2019) Genome-wide methods for investigating long noncoding RNAs. Biomed Pharmacother 111:395–401

DOI

4
Chen L (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772

DOI

5
Chen L, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

DOI

6
Chujo T, Yamazaki T, Kawaguchi T, Kurosaka S, Takumi T, Nakagawa S,Hirose T (2017) Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J 36:1447–1462

DOI

7
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

DOI

8
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science (New York, N.Y.) 358:1019–102

DOI

9
Delacôte F,Deriano L, Lambert S, Bertrand P,Saintigny Y, Lopez BS (2007) Chronic exposure to sublethal doses of radiation mimetic Zeocin™ selects for clones deficient in homologous recombination. Mutat Res 615:125–133

DOI

10
Deng T, Huang Y, Weng K, Lin S, Li Y, Shi G, Chen Y, Huang J, Liu D, Ma W (2019) TOE1 acts as a 3′ exonuclease for telomerase RNA and regulates telomere maintenance. Nucleic Acids Res 47:391–405

DOI

11
Derrien T, Guigó R, Johnson R (2012) The long non-coding RNAs: a new (P)layer in the “Dark Matter”. Front Genet 2:107

DOI

12
Evans JR, Feng FY, Chinnaiyan AM (2016) The bright side of dark matter: lncRNAs in cancer. J Clin Invest 126:2775–2782

DOI

13
Fox AH, Bond CS, Lamond AI (2005) P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell 16:5304–5315

DOI

14
Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

DOI

15
Fox AH, Nakagawa S, Hirose T, Bond CS (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci 43:124–135

DOI

16
Fujimoto A, Furuta M, Totoki Y, Tsunoda T, Kato M, Shiraishi Y, Tanaka H, Taniguchi H, Kawakami Y, Ueno M (2016) Wholegenome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet 48:500–509

DOI

17
Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard J, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. CURR Biol 13:161–167

DOI

18
George L, Indig FE, Abdelmohsen K, Gorospe M (2018) Intracellular RNA-tracking methods. Open Biol 8:180104

DOI

19
Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Benard M, Fox AH (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25:169–183

DOI

20
Hu S, Yao R, Chen L (2016) Shedding light on paraspeckle structure by super-resolution microscopy. J Cell Biol 214:789–791

DOI

21
Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A(2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39

DOI

22
Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53:393–406

DOI

23
Itzkovitz S,van Oudenaarden A (2011) Validating transcripts with probes and imaging technology. Nat Methods 8:S12–S19

DOI

24
Jandura A, Krause HM (2017) The new RNA world: growing evidence for long noncoding RNA functionality. Trends Genet 33:665–676

DOI

25
Kawakami J, Sugimoto N, Tokitoh H, Tanabe Y (2006) A novel stable RNA pentaloop that interacts specifically with a motif peptide of lambda-N protein. Nucleosides Nucleotides Nucleic Acids 25:397–416

DOI

26
Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNAguided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019

DOI

27
Kim SH, Vieira M, Kim H,Kesawat MS, Park HY (2019) MS2 labeling of endogenous beta-actin mRNA does not result in stabilization of degradation intermediates. Mol Cells 42:356–362

28
Knott GJ, Bond CS, Fox AH (2016) The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 44:3989–4004

DOI

29
Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

DOI

30
Kostyrko K, Mermod N (2016) Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Nucleic Acids Res 44:e56

DOI

31
Lanzós A, Carlevaro-Fita J, Mularoni L, Reverter F, Palumbo E, Guigó R,Johnson R (2017) Discovery of cancer driver long noncoding RNAs across 1112 tumour genomes: new candidates and distinguishing features. Sci Rep UK 7:1–16

DOI

32
Lee M, Sadowska A, Bekere I, Ho D, Gully BS, Lu Y, Iyer KS, Trewhella J, Fox AH, Bond CS (2015) The structure of human SFPQ reveals a coiled-coil mediated polymer essential for functional aggregation in gene regulation. Nucleic Acids Res 43:3826–3840

DOI

33
Lee O, Kim H, He Q, Baek HJ, Yang D, Chen L, Liang J,Chae HK, Safari A, Liu D (2011) Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics 10:M110–M1628

DOI

34
Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J CELL SCI 116:2833–2838

DOI

35
Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL, Chao JA, Park HY, de Turris V,Lopez-Jones M, Singer RH (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8:165–170

DOI

36
Liu S, Zhu J, Jiang T,Zhong Y, Tie Y, Wu Y, Zheng X, Jin Y, Fu H (2015) Identification of lncRNA MEG3 binding protein using MS2-tagged RNA affinity purification and mass spectrometry. Appl Biochem Biotech 176:1834–1845

DOI

37
Ma L, Bajic VB, Zhang Z (2014) On the classification of long noncoding RNAs. RNA Biol 10:924–933

DOI

38
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

DOI

39
Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18:206

DOI

40
Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407

DOI

41
Munschauer M, Nguyen CT, Sirokman K, Hartigan CR, Hogstrom L, Engreitz JM, Ulirsch JC, Fulco CP, Subramanian V, Chen J (2018) The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 561:132–136

DOI

42
Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034

DOI

43
Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T,Sakuma T (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:1–8

DOI

44
Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine JC (2014) The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141:4618–4627

DOI

45
Nelles DA, Fang MY, O Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496

DOI

46
Nguyen VT, Kiss T, Michels AA, Bensaude O (2001) 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414:322–325

DOI

47
Orlando SJ, Santiago Y, DeKelver RC, Freyvert Y,Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J (2010) Zincfinger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38:152

DOI

48
Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH (2014) Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:422–424

DOI

49
Perry RP, Kelley DE (1970) Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol 76:127–139

DOI

50
Qin P, Parlak M, Kuscu C,Bandaria J, Mir M,Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:1–10

DOI

51
Ramanathan M, Majzoub K, Rao DS, Neela PH, Zarnegar BJ, Mondal S, Roth JG, Gai H, Kovalski JR, Siprashvili Z (2018) RNA–protein interaction detection in living cells. Nat Methods 15:207–212

DOI

52
Rau K,Rentmeister A (2016) CRISPR/Cas9: a new tool for RNA imaging in live cells. ChemBioChem 17:1682–1684

DOI

53
Roots R, Smith KC (1976) Effects of actinomycin D on cell cycle kinetics and the DNA of Chinese hamster and mouse mammary tumor cells cultivated in vitro. Cancer Res 36:3654–3658

54
Sasaki YTF, Ideue T, Sano M, Mituyama T, Hirose T (2009) MEN [epsilon]/[beta] noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106:2525

DOI

55
Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86

DOI

56
Shelkovnikova TA, Robinson HK, Troakes C, Ninkina N, Buchman VL (2014) Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet 23:2298–2312

DOI

57
Sobell HM (1985) Actinomycin and DNA Transcription. Proc Natl Acad Sci USA 82:5328–5331

DOI

58
Spille JH, Hecht M, Grube V, Cho WK, Lee C, Cisse II (2019) A CRISPR/Cas9 platform for MS2-labelling of single mRNA in live stem cells. Methods 153:35–45

DOI

59
Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine J (2014) The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20:1844–1849

DOI

60
Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2008) MEN/nuclear-retained non-coding RNAs are upregulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

DOI

61
Taleei R, Nikjoo H (2013) Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle. Mutat Res 756:206–212

DOI

62
Tasan I, Sustackova G, Zhang L, Kim J, Sivaguru M, HamediRad M, Wang Y, Genova J, Ma J, Belmont AS (2018) CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. Nucleic Acids Res 46:e100

DOI

63
Tsai BP, Wang X, Huang L, Waterman ML (2011) Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 10: M110–M7385

DOI

64
Tutucci E, Vera M, Biswas J, Garcia J, Parker R, Singer RH (2018a) An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15:81–89

DOI

65
Tutucci E, Vera M, Singer RH (2018b) Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nat Protoc 13:2268–2296

DOI

66
Wang Y, Hu S, Wang M, Yao R, Wu D, Yang L, Chen L (2018) Genome-wide screening of NEAT1 regulators reveals crossregulation between paraspeckles and mitochondria. Nat Cell Biol 20:1145–1158

DOI

67
Wang Z, Fan P, Zhao Y, Zhang S, Lu J, Xie W, Jiang Y, Lei F, Xu N, Zhang Y (2017) NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription. Cell Mol Life Sci 74:1117–1131

DOI

68
Weinmann R, Raskas HJ, Roeder RG (1974) Role of DNAdependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci USA 71:3426–3439

DOI

69
Weinrich SL, Pruzan R, Ma L,Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichtsteiner S, Kim NW, Trager JB (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17:498

DOI

70
West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, Tolstorukov MY, Kingston RE (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802

DOI

71
West JA, Mito M, Kurosaka S, Takumi T, Tanegashima C, Chujo T, Yanaka K, Kingston RE, Hirose T, Bond C (2016) Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol 214:817–830

DOI

72
Wu B, Chao JA, Singer RH (2012) Fluorescence fluctuation spectroscopy enables quantitative imaging of single mRNAs in living cells. Biophys J 102:2936–2944

DOI

73
Wu C, Li T, Farh L, Lin L, Lin T, Yu Y, Yen T, Chiang C, Chan N (2011) Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333:459–462

DOI

74
Xing Y, Yao R, Zhang Y, Guo C, Jiang S, Xu G,Dong R, Yang L, Chen L (2017) SLERT regulates DDX21 Rings associated with Pol I transcription. Cell 169:664–678

DOI

75
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H, Carmichael GG, Chen LL (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76:981–997

DOI

76
Yang Y, Wen L, Zhu H (2015) Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci 5:59

DOI

77
Yao R, Wang Y, Chen L (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551

DOI

78
Zhang Q, Chen CY, Yedavalli VS, Jeang KT (2013) NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBIO 4:e512–e596

DOI

Outlines

/