REVIEW

Non-enzymatic covalent modifications: a new link between metabolism and epigenetics

  • Qingfei Zheng 1 ,
  • Igor Maksimovic 1,2 ,
  • Akhil Upad 1 ,
  • Yael David , 1,2,3,4
Expand
  • 1. Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
  • 2. Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
  • 3. Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
  • 4. Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA

Received date: 10 Mar 2020

Accepted date: 02 Apr 2020

Published date: 15 Jun 2020

Copyright

2020 The Author(s)

Abstract

Epigenetic modifications, including those on DNA and histones, have been shown to regulate cellular metabolism by controlling expression of enzymes involved in the corresponding metabolic pathways. In turn, metabolic flux influences epigenetic regulation by affecting the biosynthetic balance of enzyme cofactors or donors for certain chromatin modifications. Recently, non-enzymatic covalent modifications (NECMs) by chemically reactive metabolites have been reported to manipulate chromatin architecture and gene transcription through multiple mechanisms. Here, we summarize these recent advances in the identification and characterization of NECMs on nucleic acids, histones, and transcription factors, providing an additional mechanistic link between metabolism and epigenetics.

Cite this article

Qingfei Zheng , Igor Maksimovic , Akhil Upad , Yael David . Non-enzymatic covalent modifications: a new link between metabolism and epigenetics[J]. Protein & Cell, 2020 , 11(6) : 401 -416 . DOI: 10.1007/s13238-020-00722-w

1
Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:23

DOI

2
Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. Elife 1:e00078

DOI

3
Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013:683920

DOI

4
Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

DOI

5
Basu MK, Koonin EV (2005) Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB. Cell Cycle 4:947–952

DOI

6
Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, Sauer SK, Eberhardt M, Schnölzer M, Lasitschka F (2012) Methylglyoxal modification of Nav1.8 facilitates nociceptive neu- ron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 18:926–933

DOI

7
Bollong MJ, Lee G, Coukos JS, Yun H, Zambaldo C, Chang JW, Chin EN, Ahmad I, Chatterjee AK, Lairson LL (2018) A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 562:600–604

DOI

8
Bondoc FY, Bao Z, Hu WY, Gonzalez FJ, Wang Y, Yang CS, Hong JY (1999) Acetone catabolism by cytochrome P450 2E1: studies with CYP2E1-null mice. Biochem Pharmacol 58:461–463

DOI

9
Chauvin JR, Pratt DA (2017) On the reactions of thiols, sulfenic acids, and sulfinic acids with hydrogen peroxide. Angew Chem Int Ed Engl 56:6255–6259

DOI

10
Chen Y, Qin W, Li Z, Guo Z, Liu Y, Lan T, Wang C (2019) Site- specific chemoproteomic profiling of targets of glyoxal. Future Med Chem 11:2979–2987

DOI

11
Commerford SL, Carsten AL, Cronkite EP (1982) Histone turnover within nonproliferating cells. Proc Natl Acad Sci USA 79:1163–1165

DOI

12
Cripps MJ, Hanna K, Lavilla C Jr, Sayers SR, Caton PW, Sims C, De Girolamo L, Sale C, Turner MD (2017) Carnosine scavenging of glucolipotoxic free radicals enhances insulin secretion and glucose uptake. Sci Rep 7:13313

DOI

13
Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013

DOI

14
Cui Y, Li X, Lin J, Hao Q, Li XD (2017) Histone ketoamide adduction by 4-oxo-2-nonenal is a reversible posttranslational modification regulated by Sirt2. ACS Chem Biol 12:47–51

DOI

15
Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

DOI

16
Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R (2014) The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5:675–680

DOI

17
Distler MG, Palmer AA (2012) Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanis- tic insights. Front Genet 3:250

DOI

18
Doorn JA, Petersen DR (2002) Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2- nonenal and 4-oxo-2-nonenal. Chem Res Toxicol 15:1445–1450

DOI

19
Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta 1864:1372–1401

DOI

20
Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356

DOI

21
Duan X, Kelsen SG, Merali S (2008) Proteomic analysis of oxidative stress-responsive proteins in human pneumocytes: insight into the regulation of DJ-1 expression. J Proteome Res 7:4955–4961

DOI

22
Erler J, Zhang R, Petridis L, Cheng X, Smith JC, Langowski J (2014) The role of histone tails in the nucleosome: a computational study. Biophys J 107:2911–2922

DOI

23
Etchegaray JP, Mostoslavsky R (2016) Interplay between metabo- lism and epigenetics: A nuclear adaptation to environmental changes. Mol Cell 62:695–711

DOI

24
Fournet M, Bonté F, Desmoulière A (2018) Glycation damage: A possible hub for major pathophysiological disorders and aging. Aging Dis 9:880–900

DOI

25
Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E (2019) Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Bio. https://doi.org/10.1016/j.chembiol.2019.11.005

26
Galligan JJ, Rose KL, Beavers WN, Hill S, Tallman KA, Tansey WP, Marnett LJ (2014) Stable histone adduction by 4-oxo-2-nonenal: a potential link between oxidative stress and epigenetics. J Am Chem Soc 136:11864–11866

DOI

27
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA (2018) Methylglyoxal-derived posttranslational arginine modifica- tions are abundant histone marks. Proc Natl Acad Sci U S A 115:9228–9233

DOI

28
García-Giménez JL, Òlaso G, Hake SB, Bönisch C, Wiedemann SM, Markovic J, Dasí F, Gimeno A, Pérez-Quilis C, Palacios O (2013) Histone H3 glutathionylation in proliferating mam- malian cells destabilizes nucleosomal structure. Antioxid Redox Signal 19:1305–1320

DOI

29
Geerlings SE, Hoepelman AI (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26:259–265

DOI

30
Greetham D, Vickerstaff J, Shenton D, Perrone GG, Dawes IW, Grant CM (2010) Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. BMC Biochem 11:3

DOI

31
Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168:517–526

DOI

32
Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 103:6428–6435

DOI

33
Hand CE, Honek JF (2005) Biological chemistry of naturally occurring thiols of microbial and marine origin. J Nat Prod 68:293–308

DOI

34
Harmel R, Fiedler D (2018) Features and regulation of non- enzymatic post-translational modifications. Nat Chem Biol 14:244–252

DOI

35
Hellwig M, Henle T (2014) Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl 53(39):10316–10329

DOI

36
Jakubowski H (2000) Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 130:377S–381S

DOI

37
Janke R, Dodson AE, Rine J (2015) Metabolism and epigenetics. Annu Rev Cell Dev Biol 31:473–496

DOI

38
Jaramillo R, Shuck SC, Chan YS, Liu X, Bates SE, Lim PP, Tamae D, Lacoste S, O’Connor TR, Termini J (2017) DNA Advanced glycation end products (DNA-AGEs) are elevated in urine and tissue in an animal model of type 2 diabetes. Chem Res Toxicol 30:689–698

DOI

39
Jawahar MC, Murgatroyd C, Harrison EL, Baune BT (2015) Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disor- ders. Clin Epigenet 7:122

DOI

40
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

DOI

41
Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC (2007) N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc Natl Acad Sci USA 104:60–65

DOI

42
Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: Mechanisms of activation and dysregula- tion in cancer. Redox Biol 1:45–49

DOI

43
Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ (2011) Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286:7629–7640

DOI

44
Keum YS (2011) Regulation of the Keap1/Nrf2 system by chemo- preventive sulforaphane: implications of posttranslational modifi- cations. Ann N Y Acad Sci 1229:184–189

DOI

45
Kim NY, Goddard TN, Sohn S, Spiegel DA, Crawford JM (2019) Biocatalytic reversal of advanced glycation end product modifi- cation. Chembiochem 20:2402–2410

DOI

46
Kopelman P (2007) Health risks associated with overweight and obesity. Obes Rev 1:13–17

DOI

47
Lee JY, Song J, Kwon K, Jang S, Kim C, Baek K, Kim J, Park C (2012) Human DJ-1 and its homologs are novel glyoxalases. Hum Mol Genet 21:3215–3225

DOI

48
Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1–5

DOI

49
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G (2018) Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 8:314

DOI

50
Linetsky M, Shipova E, Cheng R, Ortwerth BJ (2007) Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Biochim Biophys Acta 1782:22–34

DOI

51
Little WC, Zile MR, Kitzman DW, Hundley WG, O’Brien TX, Degroof RC (2005) The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail 11:191–195

DOI

52
Maksimovic I, Ray D, Zheng Q, David Y (2019) Utilizing intein trans- splicing for in vivo generation of site-specifically modified proteins. Methods Enzymol 626:203–222

DOI

53
Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of tran- scription factors. Redox Biol 2:535–562

DOI

54
Matafome P, Sena C, Seiça R (2013) Methylglyoxal, obesity, and diabetes. Endocrine 43:472–484

DOI

55
Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS (2013) Studies of metabolite-protein interactions: a review. J Chromatogr B Analyt Technol Biomed Life Sci 966:48–58

DOI

56
Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y (2017) Parkinson’s disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro. Sci Rep 7:12816

DOI

57
May-Zhang LS, Yermalitsky V, Huang J, Pleasent T, Borja MS, Oda MN, Jerome WG, Yancey PG, Linton MF, Davies SS (2018) Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and func- tion. J Biol Chem 293:9176–9187

DOI

58
McGinty RK, Tan S (2015) Nucleosome structure and function. Chem Rev 115:2255–2273

DOI

59
Mitchell D 3rd, Ritchey LE, Park H, Babitzke P, Assmann SM, Bevilacqua PC (2018) Glyoxals as in vivo RNA structural probes of guanine base-pairing. RNA 24:114–124

DOI

60
Moellering RE, Cravatt BF (2013) Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341:549–553

DOI

61
Montellier E, Gaucher J (2019) Targeting the interplay between metabolism and epigenetics in cancer. Curr Opin Oncol 31:92–99

DOI

62
Nair DN, Prasad R, Singhal N, Bhattacharjee M, Sudhakar R, Singh P, Thanumalayan S, Kiran U, Sharma Y, Sijwali PS (2018) A conserved human DJ1-subfamily motif (DJSM) is critical for anti- oxidative and deglycase activities of Plasmodium falciparum DJ1. Mol Biochem Parasitol 222:70–80

DOI

63
Näsström T, Fagerqvist T, Barbu M, Karlsson M, Nikolajeff F, Kasrayan A, Ekberg M, Lannfelt L, Ingelsson M, Bergström J (2011) The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of α-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radic Biol Med 50:428–437

DOI

64
Obata T (2006) Diabetes and semicarbazide-sensitive amine oxidase (SSAO) activity: a review. Life Sci 79:417–422

DOI

65
Ochs R (2019) An idea to explore: understanding redox reactions in biochemistry. Biochem Mol Biol Educ 47:25–28

DOI

66
Parrish JP, Kastrinsky DB, Wolkenberg SE, Igarashi Y, Boger DL (2003) NA alkylation properties of yatakemycin. J Am Chem Soc 125:10971–10976

DOI

67
Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

DOI

68
Raiber EA, Portella G, Martínez Cuesta S, Hardisty R, Murat P, Li Z, Iurlaro M, Dean W, Spindel J, Beraldi D (2018) 5-Formyl- cytosine organizes nucleosomes and forms Schiff base interac- tions with histones in mouse embryonic stem cells. Nat Chem 10:1258–1266

DOI

69
Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306

DOI

70
Repici M, Giorgini F (2019) DJ-1 in Parkinson’s disease: Clinical insights and therapeutic perspectives. J Clin Med 8:1377

DOI

71
Richarme G, Dairou J (2017) Parkinsonism-associated protein DJ-1 is a bona fide deglycase. Biochem Biophys Res Commun 483:387–391

DOI

72
Richarme G, Mihoub M, Dairou J, Bui LC, Leger T, Lamouri A (2015) Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cys- teine, arginine, and lysine residues. J Biol Chem 290:1885–1897

DOI

73
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P (2017) Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science 357:208–211

DOI

74
Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20:353–367

DOI

75
Rydberg B, Lindahl T (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J 1:211–216

DOI

76
Sanghvi VR, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, Miele MM, Lailler N, Zhao C, de Stanchina E (2019) The oncogenic action of NRF2 depends on de-glycation by fruc- tosamine-3-kinase. Cell 178:807–819

DOI

77
Schalkwijk CG, Stehouwer CDA (2020) Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular compli- cations, and other age-related diseases. Physiol Rev 100:407–461

DOI

78
Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

DOI

79
Shuck SC, Wuenschell GE, Termini JS (2018) Product studies and mechanistic analysis of the reaction of methylglyoxal with deoxyguanosine. Chem Res Toxicol 31:105–115

DOI

80
Shuker DE, Prevost V, Friesen MD, Lin D, Ohshima H, Bartsch H (1993) Urinary markers for measuring exposure to endogenous and exogenous alkylating agents and precursors. Environ Health Perspect 99:33–37

DOI

81
Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end- products: a review. Diabetologia 44:129–146

DOI

82
Spiro RG (2002) Protein glycosylation: nature, distribution, enzy- matic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

DOI

83
Sun R, Fu L, Liu K, Tian C, Yang Y, Tallman KA, Porter NA, Liebler DC, Yang J (2017) Chemoproteomics reveals chemical diversity and dynamics of 4-oxo-2-nonenal modifications in cells. Mol Cell Proteomics 16:1789–1800

DOI

84
Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M (2002) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395–402

DOI

85
Synold T, Xi B, Wuenschell GE, Tamae D, Figarola JL, Rahbar S, Termini J (2008) Advanced glycation end products of DNA: quantification of N2-(1-Carboxyethyl)-2’-deoxyguanosine in bio- logical samples by liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol 21:2148–2155

DOI

86
Szende B, Tyihák E (2010) Effect of formaldehyde on cell prolifer- ation and death. Cell Biol Int 34:1273–1282

DOI

87
Szwergold BS, Howell S, Beisswenger PJ (2001) Human fruc- tosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50:2139–2147

DOI

88
Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5:213–218

DOI

89
Talasz H, Wasserer S, Puschendorf B (2002) Nonenzymatic glycation of histones in vitro and in vivo. J Cell Biochem 85:24–34

DOI

90
Tamae D, Lim P, Wuenschell GE, Termini J (2011) Mutagenesis and repair induced by the DNA advanced glycation end product N2-1- (carboxyethyl)-2’-deoxyguanosine in human cells. Biochemistry 50:2321–2329

DOI

91
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ (2018) Immunomodulation by Processed Animal Feed: the role of maillard reaction products and advanced glycation end-products (AGEs). Front Immunol 9:2088

DOI

92
Toyoda Y, Erkut C, Pan-Montojo F, Boland S, Stewart MP, Müller DJ, Wurst W, Hyman AA, Kurzchalia TV (2014) Products of the Parkinson’s disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neu- ronal survival. Biol Open 3:777–784

DOI

93
Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9:17

DOI

94
Tzika E, Dreker T, Imhof A (2018) Epigenetics and metabolism in health and disease. Front Genet 9:361

DOI

95
Van Laer K, Hamilton CJ, Messens J (2013) Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid Redox Signal 18:1642–1653

DOI

96
Van Schaftingen E, Delpierre G, Collard F, Fortpied J, Gemayel R, Wiame E, Veiga-da-Cunha M (2007) Fructosamine 3-kinase and other enzymes involved in protein deglycation. Adv Enzyme Regul 47:261–269

DOI

97
Veiga da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Théate I, Vertommen D, Clotman F, Lemaigre F, Devuyst O, Van Schaftingen E (2006) Increased protein glycation in fructosamine 3-kinase-deficient mice. Biochem J 399:257–264

DOI

98
Wagner GR, Hirschey MD (2014) Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell 54:5–16

DOI

99
Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

DOI

100
Wanner MJ, Zuidinga E, Tromp DS, Vilím J, Jørgensen SI, van Maarseveen JH (2020) Synthetic evidence of the Amadori-type alkylation of biogenic amines by the neurotoxic metabolite dopegal. J Org Chem 85:1202–1207

DOI

101
Wei B, Berning K, Quan C, Zhang YT (2017) Glycation of antibodies: Modification, methods and potential effects on biological func- tions. MAbs 9:586–594

DOI

102
Weng X, Gong J, Chen Y, Wu T, Wang F, Yang S, Yuan Y, Luo G, Chen K, Hu L (2020) Keth-seq for transcriptiome wide RNA structure mapping. Nat Chem Biol. https://doi.org/10.1038/s41589-019-0459-3

103
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD (2019) The human gut bacterial genotoxin colibactin alkylates DNA. Science 363: eaar7785

DOI

104
Wuenschell GE, Tamae D, Cercillieux A, Yamanaka R, Yu C, Termini J (2010) Mutagenic potential of DNA glycation: miscoding by (R)- and (S)-N2-(1-carboxyethyl)-2’-deoxyguanosine. Biochemistry 49:1814–1821

DOI

105
Xu Y, Chen X (2006) Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family. J Biol Chem 281:26702–26713

DOI

106
Xu H, Huang W, He QL, Zhao ZX, Zhang F, Wang R, Kang J, Tang GL (2012) Self-resistance to an antitumor antibiotic: a DNA glycosylase triggers the base-excision repair system in yatake- mycin biosynthesis. Angew Chem Int Ed Engl 51:10532–10536

DOI

107
Xu L, Chen J, Gao J, Yu H, Yang P (2015) Crosstalk of homocysteinylation, methylation and acetylation on histone H3. Analyst 140:3057–3063

DOI

108
Zhang Z, Smith BA, Wang L, Brock A, Cho C, Schultz PG (2003) A new strategy for the site-specific modification of proteins in vivo. Biochemistry 42:6735–6746

DOI

109
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3- dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953

DOI

110
Zhang Q, Bai B, Mei X, Wan C, Cao H, Li Dan, Wang S, Zhang M, Wang Z, Wu J (2018) Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nat Commun 9:3436

DOI

111
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M (2019) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580

DOI

112
Zheng Q, Prescott NA, Maksimovic I, David Y (2019a) (De)Toxifying the epigenetic code. Chem Res Toxicol 32:796–807

DOI

113
Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D’Ambrosio H, Liu B, Chandarlapaty S, Liu S (2019b) Reversible histone glycation is associated with diseaserelated changes in chromatin architecture. Nat Commun 10:1289

DOI

114
Zheng Q, Osunsade A, David Y (2019) Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. bioRxiv

DOI

115
Zheng Q, Maksimovic I, Upad A, Guber D, David Y (2020) Synthesis of an alkynyl methylglyoxal probe to investigate nonenzymatic histone glycation. J Org Chem 85:1691–1697

DOI

116
Zhu Y, Snooks H, Sang S (2018) Complexity of advanced glycation end products in foods: Where are we now? J Agric Food Chem 66:1325

DOI

Outlines

/