Non-enzymatic covalent modifications: a new link between metabolism and epigenetics
Received date: 10 Mar 2020
Accepted date: 02 Apr 2020
Published date: 15 Jun 2020
Copyright
Epigenetic modifications, including those on DNA and histones, have been shown to regulate cellular metabolism by controlling expression of enzymes involved in the corresponding metabolic pathways. In turn, metabolic flux influences epigenetic regulation by affecting the biosynthetic balance of enzyme cofactors or donors for certain chromatin modifications. Recently, non-enzymatic covalent modifications (NECMs) by chemically reactive metabolites have been reported to manipulate chromatin architecture and gene transcription through multiple mechanisms. Here, we summarize these recent advances in the identification and characterization of NECMs on nucleic acids, histones, and transcription factors, providing an additional mechanistic link between metabolism and epigenetics.
Key words: epigenetics; metabolism; non-enzymatic modification; chromatin; human disease
Qingfei Zheng , Igor Maksimovic , Akhil Upad , Yael David . Non-enzymatic covalent modifications: a new link between metabolism and epigenetics[J]. Protein & Cell, 2020 , 11(6) : 401 -416 . DOI: 10.1007/s13238-020-00722-w
1 |
Allaman I, Bélanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:23
|
2 |
Ammar R, Torti D, Tsui K, Gebbia M, Durbic T, Bader GD, Giaever G, Nislow C (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. Elife 1:e00078
|
3 |
Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013:683920
|
4 |
Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395
|
5 |
Basu MK, Koonin EV (2005) Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB. Cell Cycle 4:947–952
|
6 |
Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, Sauer SK, Eberhardt M, Schnölzer M, Lasitschka F
|
7 |
Bollong MJ, Lee G, Coukos JS, Yun H, Zambaldo C, Chang JW, Chin EN, Ahmad I, Chatterjee AK, Lairson LL
|
8 |
Bondoc FY, Bao Z, Hu WY, Gonzalez FJ, Wang Y, Yang CS, Hong JY (1999) Acetone catabolism by cytochrome P450 2E1: studies with CYP2E1-null mice. Biochem Pharmacol 58:461–463
|
9 |
Chauvin JR, Pratt DA (2017) On the reactions of thiols, sulfenic acids, and sulfinic acids with hydrogen peroxide. Angew Chem Int Ed Engl 56:6255–6259
|
10 |
Chen Y, Qin W, Li Z, Guo Z, Liu Y, Lan T, Wang C (2019) Site- specific chemoproteomic profiling of targets of glyoxal. Future Med Chem 11:2979–2987
|
11 |
Commerford SL, Carsten AL, Cronkite EP (1982) Histone turnover within nonproliferating cells. Proc Natl Acad Sci USA 79:1163–1165
|
12 |
Cripps MJ, Hanna K, Lavilla C Jr, Sayers SR, Caton PW, Sims C, De Girolamo L, Sale C, Turner MD (2017) Carnosine scavenging of glucolipotoxic free radicals enhances insulin secretion and glucose uptake. Sci Rep 7:13313
|
13 |
Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV
|
14 |
Cui Y, Li X, Lin J, Hao Q, Li XD (2017) Histone ketoamide adduction by 4-oxo-2-nonenal is a reversible posttranslational modification regulated by Sirt2. ACS Chem Biol 12:47–51
|
15 |
Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ
|
16 |
Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R (2014) The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5:675–680
|
17 |
Distler MG, Palmer AA (2012) Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanis- tic insights. Front Genet 3:250
|
18 |
Doorn JA, Petersen DR (2002) Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2- nonenal and 4-oxo-2-nonenal. Chem Res Toxicol 15:1445–1450
|
19 |
Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta 1864:1372–1401
|
20 |
Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356
|
21 |
Duan X, Kelsen SG, Merali S (2008) Proteomic analysis of oxidative stress-responsive proteins in human pneumocytes: insight into the regulation of DJ-1 expression. J Proteome Res 7:4955–4961
|
22 |
Erler J, Zhang R, Petridis L, Cheng X, Smith JC, Langowski J (2014) The role of histone tails in the nucleosome: a computational study. Biophys J 107:2911–2922
|
23 |
Etchegaray JP, Mostoslavsky R (2016) Interplay between metabo- lism and epigenetics: A nuclear adaptation to environmental changes. Mol Cell 62:695–711
|
24 |
Fournet M, Bonté F, Desmoulière A (2018) Glycation damage: A possible hub for major pathophysiological disorders and aging. Aging Dis 9:880–900
|
25 |
Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E
|
26 |
Galligan JJ, Rose KL, Beavers WN, Hill S, Tallman KA, Tansey WP, Marnett LJ (2014) Stable histone adduction by 4-oxo-2-nonenal: a potential link between oxidative stress and epigenetics. J Am Chem Soc 136:11864–11866
|
27 |
Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA
|
28 |
García-Giménez JL, Òlaso G, Hake SB, Bönisch C, Wiedemann SM, Markovic J, Dasí F, Gimeno A, Pérez-Quilis C, Palacios O
|
29 |
Geerlings SE, Hoepelman AI (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26:259–265
|
30 |
Greetham D, Vickerstaff J, Shenton D, Perrone GG, Dawes IW, Grant CM (2010) Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. BMC Biochem 11:3
|
31 |
Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS
|
32 |
Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 103:6428–6435
|
33 |
Hand CE, Honek JF (2005) Biological chemistry of naturally occurring thiols of microbial and marine origin. J Nat Prod 68:293–308
|
34 |
Harmel R, Fiedler D (2018) Features and regulation of non- enzymatic post-translational modifications. Nat Chem Biol 14:244–252
|
35 |
Hellwig M, Henle T (2014) Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl 53(39):10316–10329
|
36 |
Jakubowski H (2000) Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 130:377S–381S
|
37 |
Janke R, Dodson AE, Rine J (2015) Metabolism and epigenetics. Annu Rev Cell Dev Biol 31:473–496
|
38 |
Jaramillo R, Shuck SC, Chan YS, Liu X, Bates SE, Lim PP, Tamae D, Lacoste S, O’Connor TR, Termini J (2017) DNA Advanced glycation end products (DNA-AGEs) are elevated in urine and tissue in an animal model of type 2 diabetes. Chem Res Toxicol 30:689–698
|
39 |
Jawahar MC, Murgatroyd C, Harrison EL, Baune BT (2015) Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disor- ders. Clin Epigenet 7:122
|
40 |
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080
|
41 |
Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC (2007) N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc Natl Acad Sci USA 104:60–65
|
42 |
Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: Mechanisms of activation and dysregula- tion in cancer. Redox Biol 1:45–49
|
43 |
Kawai Y, Garduño L, Theodore M, Yang J, Arinze IJ (2011) Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286:7629–7640
|
44 |
Keum YS (2011) Regulation of the Keap1/Nrf2 system by chemo- preventive sulforaphane: implications of posttranslational modifi- cations. Ann N Y Acad Sci 1229:184–189
|
45 |
Kim NY, Goddard TN, Sohn S, Spiegel DA, Crawford JM (2019) Biocatalytic reversal of advanced glycation end product modifi- cation. Chembiochem 20:2402–2410
|
46 |
Kopelman P (2007) Health risks associated with overweight and obesity. Obes Rev 1:13–17
|
47 |
Lee JY, Song J, Kwon K, Jang S, Kim C, Baek K, Kim J, Park C (2012) Human DJ-1 and its homologs are novel glyoxalases. Hum Mol Genet 21:3215–3225
|
48 |
Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1–5
|
49 |
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G (2018) Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 8:314
|
50 |
Linetsky M, Shipova E, Cheng R, Ortwerth BJ (2007) Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Biochim Biophys Acta 1782:22–34
|
51 |
Little WC, Zile MR, Kitzman DW, Hundley WG, O’Brien TX, Degroof RC (2005) The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail 11:191–195
|
52 |
Maksimovic I, Ray D, Zheng Q, David Y (2019) Utilizing intein trans- splicing for in vivo generation of site-specifically modified proteins. Methods Enzymol 626:203–222
|
53 |
Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of tran- scription factors. Redox Biol 2:535–562
|
54 |
Matafome P, Sena C, Seiça R (2013) Methylglyoxal, obesity, and diabetes. Endocrine 43:472–484
|
55 |
Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS (2013) Studies of metabolite-protein interactions: a review. J Chromatogr B Analyt Technol Biomed Life Sci 966:48–58
|
56 |
Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y
|
57 |
May-Zhang LS, Yermalitsky V, Huang J, Pleasent T, Borja MS, Oda MN, Jerome WG, Yancey PG, Linton MF, Davies SS (2018) Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and func- tion. J Biol Chem 293:9176–9187
|
58 |
McGinty RK, Tan S (2015) Nucleosome structure and function. Chem Rev 115:2255–2273
|
59 |
Mitchell D 3rd, Ritchey LE, Park H, Babitzke P, Assmann SM, Bevilacqua PC (2018) Glyoxals as in vivo RNA structural probes of guanine base-pairing. RNA 24:114–124
|
60 |
Moellering RE, Cravatt BF (2013) Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341:549–553
|
61 |
Montellier E, Gaucher J (2019) Targeting the interplay between metabolism and epigenetics in cancer. Curr Opin Oncol 31:92–99
|
62 |
Nair DN, Prasad R, Singhal N, Bhattacharjee M, Sudhakar R, Singh P, Thanumalayan S, Kiran U, Sharma Y, Sijwali PS (2018) A conserved human DJ1-subfamily motif (DJSM) is critical for anti- oxidative and deglycase activities of Plasmodium falciparum DJ1. Mol Biochem Parasitol 222:70–80
|
63 |
Näsström T, Fagerqvist T, Barbu M, Karlsson M, Nikolajeff F, Kasrayan A, Ekberg M, Lannfelt L, Ingelsson M, Bergström J (2011) The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of α-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radic Biol Med 50:428–437
|
64 |
Obata T (2006) Diabetes and semicarbazide-sensitive amine oxidase (SSAO) activity: a review. Life Sci 79:417–422
|
65 |
Ochs R (2019) An idea to explore: understanding redox reactions in biochemistry. Biochem Mol Biol Educ 47:25–28
|
66 |
Parrish JP, Kastrinsky DB, Wolkenberg SE, Igarashi Y, Boger DL (2003) NA alkylation properties of yatakemycin. J Am Chem Soc 125:10971–10976
|
67 |
Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157
|
68 |
Raiber EA, Portella G, Martínez Cuesta S, Hardisty R, Murat P, Li Z, Iurlaro M, Dean W, Spindel J, Beraldi D
|
69 |
Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306
|
70 |
Repici M, Giorgini F (2019) DJ-1 in Parkinson’s disease: Clinical insights and therapeutic perspectives. J Clin Med 8:1377
|
71 |
Richarme G, Dairou J (2017) Parkinsonism-associated protein DJ-1 is a bona fide deglycase. Biochem Biophys Res Commun 483:387–391
|
72 |
Richarme G, Mihoub M, Dairou J, Bui LC, Leger T, Lamouri A (2015) Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cys- teine, arginine, and lysine residues. J Biol Chem 290:1885–1897
|
73 |
Richarme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P
|
74 |
Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20:353–367
|
75 |
Rydberg B, Lindahl T (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J 1:211–216
|
76 |
Sanghvi VR, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, Miele MM, Lailler N, Zhao C, de Stanchina E
|
77 |
Schalkwijk CG, Stehouwer CDA (2020) Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular compli- cations, and other age-related diseases. Physiol Rev 100:407–461
|
78 |
Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176
|
79 |
Shuck SC, Wuenschell GE, Termini JS (2018) Product studies and mechanistic analysis of the reaction of methylglyoxal with deoxyguanosine. Chem Res Toxicol 31:105–115
|
80 |
Shuker DE, Prevost V, Friesen MD, Lin D, Ohshima H, Bartsch H (1993) Urinary markers for measuring exposure to endogenous and exogenous alkylating agents and precursors. Environ Health Perspect 99:33–37
|
81 |
Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end- products: a review. Diabetologia 44:129–146
|
82 |
Spiro RG (2002) Protein glycosylation: nature, distribution, enzy- matic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R
|
83 |
Sun R, Fu L, Liu K, Tian C, Yang Y, Tallman KA, Porter NA, Liebler DC, Yang J (2017) Chemoproteomics reveals chemical diversity and dynamics of 4-oxo-2-nonenal modifications in cells. Mol Cell Proteomics 16:1789–1800
|
84 |
Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M
|
85 |
Synold T, Xi B, Wuenschell GE, Tamae D, Figarola JL, Rahbar S, Termini J (2008) Advanced glycation end products of DNA: quantification of N2-(1-Carboxyethyl)-2’-deoxyguanosine in bio- logical samples by liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol 21:2148–2155
|
86 |
Szende B, Tyihák E (2010) Effect of formaldehyde on cell prolifer- ation and death. Cell Biol Int 34:1273–1282
|
87 |
Szwergold BS, Howell S, Beisswenger PJ (2001) Human fruc- tosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes 50:2139–2147
|
88 |
Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5:213–218
|
89 |
Talasz H, Wasserer S, Puschendorf B (2002) Nonenzymatic glycation of histones in vitro and in vivo. J Cell Biochem 85:24–34
|
90 |
Tamae D, Lim P, Wuenschell GE, Termini J (2011) Mutagenesis and repair induced by the DNA advanced glycation end product N2-1- (carboxyethyl)-2’-deoxyguanosine in human cells. Biochemistry 50:2321–2329
|
91 |
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ (2018) Immunomodulation by Processed Animal Feed: the role of maillard reaction products and advanced glycation end-products (AGEs). Front Immunol 9:2088
|
92 |
Toyoda Y, Erkut C, Pan-Montojo F, Boland S, Stewart MP, Müller DJ, Wurst W, Hyman AA, Kurzchalia TV (2014) Products of the Parkinson’s disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neu- ronal survival. Biol Open 3:777–784
|
93 |
Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9:17
|
94 |
Tzika E, Dreker T, Imhof A (2018) Epigenetics and metabolism in health and disease. Front Genet 9:361
|
95 |
Van Laer K, Hamilton CJ, Messens J (2013) Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid Redox Signal 18:1642–1653
|
96 |
Van Schaftingen E, Delpierre G, Collard F, Fortpied J, Gemayel R, Wiame E, Veiga-da-Cunha M (2007) Fructosamine 3-kinase and other enzymes involved in protein deglycation. Adv Enzyme Regul 47:261–269
|
97 |
Veiga da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Théate I, Vertommen D, Clotman F, Lemaigre F, Devuyst O, Van Schaftingen E (2006) Increased protein glycation in fructosamine 3-kinase-deficient mice. Biochem J 399:257–264
|
98 |
Wagner GR, Hirschey MD (2014) Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell 54:5–16
|
99 |
Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y
|
100 |
Wanner MJ, Zuidinga E, Tromp DS, Vilím J, Jørgensen SI, van Maarseveen JH (2020) Synthetic evidence of the Amadori-type alkylation of biogenic amines by the neurotoxic metabolite dopegal. J Org Chem 85:1202–1207
|
101 |
Wei B, Berning K, Quan C, Zhang YT (2017) Glycation of antibodies: Modification, methods and potential effects on biological func- tions. MAbs 9:586–594
|
102 |
Weng X, Gong J, Chen Y, Wu T, Wang F, Yang S, Yuan Y, Luo G, Chen K, Hu L
|
103 |
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD
|
104 |
Wuenschell GE, Tamae D, Cercillieux A, Yamanaka R, Yu C, Termini J (2010) Mutagenic potential of DNA glycation: miscoding by (R)- and (S)-N2-(1-carboxyethyl)-2’-deoxyguanosine. Biochemistry 49:1814–1821
|
105 |
Xu Y, Chen X (2006) Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family. J Biol Chem 281:26702–26713
|
106 |
Xu H, Huang W, He QL, Zhao ZX, Zhang F, Wang R, Kang J, Tang GL (2012) Self-resistance to an antitumor antibiotic: a DNA glycosylase triggers the base-excision repair system in yatake- mycin biosynthesis. Angew Chem Int Ed Engl 51:10532–10536
|
107 |
Xu L, Chen J, Gao J, Yu H, Yang P (2015) Crosstalk of homocysteinylation, methylation and acetylation on histone H3. Analyst 140:3057–3063
|
108 |
Zhang Z, Smith BA, Wang L, Brock A, Cho C, Schultz PG (2003) A new strategy for the site-specific modification of proteins in vivo. Biochemistry 42:6735–6746
|
109 |
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3- dependent ubiquitin ligase complex. Mol Cell Biol 24:10941–10953
|
110 |
Zhang Q, Bai B, Mei X, Wan C, Cao H, Li Dan, Wang S, Zhang M, Wang Z, Wu J
|
111 |
Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M
|
112 |
Zheng Q, Prescott NA, Maksimovic I, David Y (2019a) (De)Toxifying the epigenetic code. Chem Res Toxicol 32:796–807
|
113 |
Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D’Ambrosio H, Liu B, Chandarlapaty S, Liu S
|
114 |
Zheng Q, Osunsade A, David Y (2019) Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation. bioRxiv
|
115 |
Zheng Q, Maksimovic I, Upad A, Guber D, David Y (2020) Synthesis of an alkynyl methylglyoxal probe to investigate nonenzymatic histone glycation. J Org Chem 85:1691–1697
|
116 |
Zhu Y, Snooks H, Sang S (2018) Complexity of advanced glycation end products in foods: Where are we now? J Agric Food Chem 66:1325
|
/
〈 | 〉 |