RESEARCH ARTICLE

Structural insights into substrate recognition by the type VII secretion system

  • Shuhui Wang 1,2,7 ,
  • Kaixuan Zhou 3 ,
  • Xiaolin Yang 1,2,7 ,
  • Bing Zhang 1,2,7 ,
  • Yao Zhao 1,2,7 ,
  • Yu Xiao 1,2,7 ,
  • Xiuna Yang 1 ,
  • Haitao Yang 1 ,
  • Luke W. Guddat 6 ,
  • Jun Li , 1 ,
  • Zihe Rao , 1,3,4,5
Expand
  • 1. Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2. CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
  • 3. State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin 300353, China
  • 4. Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
  • 5. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 6. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
  • 7. University of Chinese Academy of Sciences, Beijing 100101, China

Received date: 10 Apr 2019

Accepted date: 02 Jul 2019

Published date: 15 Feb 2020

Copyright

2019 The Author(s)

Abstract

Type VII secretion systems (T7SSs) are found in many disease related bacteria including Mycobacterium tuberculosis (Mtb). ESX-1 [early secreted antigen 6 kilodaltons (ESAT-6) system 1] is one of the five subtypes (ESX-1∼5) of T7SSs in Mtb, where it delivers virulence factors into host macrophages during infection. However, little is known about the molecular details as to how this occurs. Here, we provide high-resolution crystal structures of the C-terminal ATPase3 domains of EccC subunits from four different Mtb T7SS subtypes. These structures adopt a classic RecA-like ɑ/β fold with a conserved Mg-ATP binding site. The structure of EccCb1 in complex with the C-terminal peptide of EsxB identifies the location of substrate recognition site and shows how the specific signaling module “LxxxMxF” for Mtb ESX-1 binds to this site resulting in a translation of the bulge loop. A comparison of all the ATPase3 structures shows there are significant differences in the shape and composition of the signal recognition pockets across the family, suggesting that distinct signaling sequences of substrates are required to be specifically recognized by different T7SSs. A hexameric model of the EccC-ATPase3 is proposed and shows the recognition pocket is located near the central substrate translocation channel. The diameter of the channel is ∼25-Å, with a size that would allow helix-bundle shaped substrate proteins to bind and pass through. Thus, our work provides new molecular insights into substrate recognition for Mtb T7SS subtypes and also a possible transportation mechanism for substrate and/or virulence factor secretion.

Cite this article

Shuhui Wang , Kaixuan Zhou , Xiaolin Yang , Bing Zhang , Yao Zhao , Yu Xiao , Xiuna Yang , Haitao Yang , Luke W. Guddat , Jun Li , Zihe Rao . Structural insights into substrate recognition by the type VII secretion system[J]. Protein & Cell, 2020 , 11(2) : 124 -137 . DOI: 10.1007/s13238-019-00671-z

1
Adams PD, Afonine PV, Bunkóczi G,Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221

DOI

2
Ashkenazy H,Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38: W529–W533

DOI

3
Beckham KS, Ciccarelli L, Bunduc CM, Mertens HDT, Ummels R, Lugmayr W, Mayr J, Rettel M, Savitski MM, Svergun DI (2017) Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat Microbiol 2:17047

DOI

4
Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523

DOI

5
Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B (1998) A Mycobacterium tuberculosisoperon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144(Pt 11):3195–3203

DOI

6
Bitter W, Houben EN, Luirink J, Appelmelk BJ (2009) Type VII secretion in mycobacteria: classification in line with cell envelope structure. Trends Microbiol 17:337–338

DOI

7
Bowler MW, Montgomery MG, Leslie AG, Walker JE (2006) How azide inhibits ATP hydrolysis by the F-ATPases. Proc Natl Acad Sci USA 103:8646–8649

DOI

8
Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12:500–508

DOI

9
Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D, Demangel C, Hinds J, Neyrolles O, Butcher PD, Leclerc C (2006) Dissection of ESAT-6 system 1 of Mycobacterium tuberculosisand impact on immunogenicity and virulence. Infect Immun 74:88–98

DOI

10
Carlsson F, Joshi SA, Rangell L, Brown EJ (2009) Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 5:e1000285

DOI

11
Carlsson F, Kim J, Dumitru C, Barck KH, Carano RAD, Sun M, Diehl L, Brown EJ (2010) Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 6:e1000895

DOI

12
Celniker G, Nimrod G,Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal N (2013) ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr J Chem 53:199–206

DOI

13
Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS (2006) C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–1636

DOI

14
Champion PA, Champion MM, Manzanillo P, Cox JS (2009) ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 73:950–962

DOI

15
Cole ST, Eiglmeier K, Parkhill J,James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

DOI

16
Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke- Grauls CMJE, Luirink J, Bitter W (2012) General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci USA 109:11342–11347

DOI

17
Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

DOI

18
Derbyshire KM, Gray TA (2014) Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spectr 2(1):MGM2–0022-2013

DOI

19
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132

DOI

20
Flint JL, Kowalski JC, Karnati PK, Derbyshire KM (2004) The RD1 virulence locus of Mycobacterium tuberculosisregulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci USA 101:12598–12603

DOI

21
Gao L-Y, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ (2004) A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 53:1677–1693

DOI

22
Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD (2001) The ESAT-6 gene cluster of Mycobacterium tuberculosisand other high G+C Gram-positive bacteria. Genome Biol 2:RESEARCH0044

DOI

23
Gray TA, Krywy JA, Harold J, Palumbo MJ, Derbyshire KM (2013) Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLoS Biol 11:e1001602

DOI

24
Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM (2016) Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science 354:347–350

DOI

25
Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR (2004) Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51:359–370

DOI

26
Hervas-Stubbs S, Majlessi L, Simsova M, Morova J, Rojas MJ, Nouzé C, Brodin P, Sebo P, Leclerc C (2006) High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosisinfection. Infect Immun 74:3396–3407

DOI

27
Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44: W351–W355

DOI

28
Houben EN, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff TH, Luirink J, Bitter W (2012) Composi tionof the type VII secretion system membrane complex. Mol Microbiol 86:472–484

DOI

29
Hsu T, Hingley-Wilson SM, Chen B, Chen M,Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425

DOI

30
Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ (2008) ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol 10:1866–1878

DOI

31
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

DOI

32
Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

DOI

33
Majlessi L, Rojas MJ, Brodin P, Leclerc C (2003) CD8+-T-cell responses of Mycobacterium-infected mice to a newly identified major histocompatibility complex class I-restricted epitope shared by proteins of the ESAT-6 family. Infect Immun 71:7173–7177

DOI

34
Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J (2006) Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol Cell 23:457–469

DOI

35
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

DOI

36
McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL, Cox JS, Brown EJ (2007) A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 3:e105 Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

DOI

37
Pallen MJ (2002) The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends Microbiol 10:209–212

DOI

38
Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contravan S, Manzanillo P, Chan K, Dovey C, Cox JS (2008) Secreted transcription factor controls Mycobacterium tuberculosisvirulence. Nature 454:717–721

DOI

39
Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J (2005) Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–2498

DOI

40
Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A, Finer- Moore J, Holton J, Cheng Y, Stroud RM, Cox JS (2015) Substrates control multimerization and activation of the multidomain ATPase motor of type VII secretion. Cell 161:501–512

DOI

41
Sampson SL (2011) Mycobacterial PE/PPE proteins at the host– pathogen interface. Clin Dev Immunol 2011:497203

DOI

42
Serafini A, Pisu D, Palu G, Rodriguez GM, Manganelli R (2013) The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS ONE 8:e78351

DOI

43
Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng T-Y, Siddiqi N, Fortune SM, Moody DB, Rubin EJ (2009) Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 106:18792–18797

DOI

44
Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J (2012) Phagosomal rupture by Mycobacterium tuberculosisresults in toxicity and host cell death. PLoS Pathog 8: e1002507

DOI

45
Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, Nieselt K, Krause J, Vera-Cabrera L, Cole ST (2015) Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc Natl Acad Sci USA 112:4459–4464

DOI

46
Skjøt RLV, Brock I, Arend SM, Munk ME, Theisen M, Ottenhoff TH, Andersen P (2002) Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun 70:5446–5453

DOI

47
Smith J, Manoranjan J, Pan M, Bohsali A, Xu J, Liu J, McDonald KL, Szyk A, LaRonde-LeBlanc N, Gao LY (2008) Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 76:5478–5487

DOI

48
Sorensen AL, Nagai S,Houen G,Andersen P, Andersen AB (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 63:1710–1717

DOI

49
Stanley SA, Raghavan S, Hwang WW, Cox JS (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 100:13001–13006

DOI

50
Stoop EJ, Schipper T, Rosendahl Huber SK, Nezhinsky AE, Verbeek FJ, Gurcha SS, Besra GS, Vandenbroucke-Grauls CM, Bitter W, van der Sar AM (2011) Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis Model Mech 4:526–536

DOI

51
Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ (2017) The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 25:192–204

DOI

52
van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298

DOI

53
Volkman HE, Clay H, Beery D, Chang JCW, Sherman DR, Ramakrishnan L (2004) Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2:e367

DOI

54
Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327:466–469

DOI

55
Walldén K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G (2012) Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci USA 109:11348–11353

DOI

56
Weerdenburg EM, Abdallah AM, Mitra S, de Punder K, van der Wel NN, Bird S, Appelmelk BJ, Bitter W, van der Sar AM (2012) ESX- deficient Mycobacterium marinum is hypervirulent in adult zebrafish. Cell Microbiol 14:728–739

DOI

57
Wong KW, Jacobs WR Jr (2011) Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol 13:1371–1384

DOI

58
World Health Organization (2018) Global tuberculosis report2018

59
Zoltner M, Ng WMAV, Money JJ, Fyfe PK, Kneuper H, Palmer T, Hunter WN (2016) EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem J 473(13):1941–1952

DOI

Outlines

/