Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch
Received date: 26 Sep 2018
Accepted date: 23 Oct 2018
Published date: 15 Jun 2019
Copyright
Protein ubiquitination is an important means of posttranslational modification which plays an essential role in the regulation of various aspects of leukocyte development and function. The specificity of ubiquitin tagging to a protein substrate is determined by E3 ubiquitin ligases via defined E3-substrate interactions. In this review, we will focus on two E3 ligases, VHL and Itch, to discuss the latest progress in understanding their roles in the differentiation and function of CD4+ T helper cell subsets, the stability of regulatory T cells, effector function of CD8+ T cells, as well as the development and maturation of innate lymphoid cells. The biological implications of these E3 ubiquitin ligases will be highlighted in the context of normal and dysregulated immune responses including the control of homeostasis, inflammation, auto-immune responses and anti-tumor immunity. Further elucidation of the ubiquitin system in immune cells will help in the design of new therapeutic interventions for human immunological diseases and cancer.
Key words: ubiquitin; E3 ligase; VHL; HIF; Itch; WWP2; Cbl-b; inflammation; autoimmunity
Daisuke Aki , Qian Li , Hui Li , Yun-Cai Liu , Jee Ho Lee . Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch[J]. Protein & Cell, 2019 , 10(6) : 395 -404 . DOI: 10.1007/s13238-018-0586-8
1 |
Abbott RK, Thayer M, Labuda J, Silva M, Philbrook P, Cain DW, Kojima H, Hatfield S, Sethumadhavan S, Ohta A
|
2 |
Aki D, Li H, Zhang W, Zheng M, Elly C, Lee JH, Zou W, Liu YC (2018) The E3 ligases Itch and WWP2 cooperate to limit TH2 differentiation by enhancing signaling through the TCR. Nat Immunol. 19:766–775
|
3 |
Aki D, Zhang W, Liu YC (2015) The E3 ligase itch in immune regulation and beyond. Immunol Rev 266:6–26
|
4 |
Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A, Mariathasan S, Bouchard D, Wakeham A, Itie A
|
5 |
Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G,George J (2008) Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 38:2412–2418
|
6 |
Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH (2004) Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Mol Cell Biol 24:9038–9047
|
7 |
Brigui A, Hofmann L, Arguelles C, Sanial M, Holmgren RA, Plessis A (2015) Control of the dynamics and homeostasis of the Drosophila Hedgehog receptor Patched by two C2-WW-HECTE3 Ubiquitin ligases. Open Biol 5:150112
|
8 |
Chaudhary N, Maddika S (2014) WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and DeltaNp73 levels. Mol Cell Biol 34:3754–3764
|
9 |
Chen Z, Jiang H, Xu W, Li X, Dempsey DR, Zhang X, Devreotes P, Wolberger C, Amzel LM, Gabelli SB
|
10 |
Chen Z, Thomas SN, Bolduc DM, Jiang X, Zhang X, Wolberger C, Cole PA (2016) Enzymatic analysis of PTEN ubiquitylation by WWP2 and NEDD4-1 E3 ligases. Biochemistry 55:3658–3666
|
11 |
Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ, Jang IK, Gutkind JS, Shevach E, Gu H (2000) Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403:216–220
|
12 |
Cho SH, Raybuck AL, Stengel K, Wei M, Beck TC, Volanakis E, Thomas JW, Hiebert S, Haase VH, Boothby MR (2016) Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537:234–238
|
13 |
Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, de Zoeten EF, Cambier JC, Stenmark KR, Colgan SP
|
14 |
Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, Eil RL, Hickman HD, Yu Z, Pan JH
|
15 |
Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508:397–401
|
16 |
Corzo CA, Condamine T,Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T
|
17 |
Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR
|
18 |
Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E,Johnson RS, Goldrath AW (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14:1173–1182
|
19 |
Ebbo M, Crinier A, Vely F, Vivier E (2017) Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 17:665–678
|
20 |
Eliasson P, Jonsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22
|
21 |
Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR, Mauri C (2007) Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 178:7868–7878
|
22 |
Fang D, Elly C, Gao B, Fang N, Altman Y, Joazeiro C, Hunter T, Copeland N, Jenkins N, Liu YC (2002) Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol 3:281–287
|
23 |
Gilberto S, Peter M (2017) Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol 216:2259–2271
|
24 |
Hale LP, Braun RD, Gwinn WM, Greer PK, Dewhirst MW (2002) Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am J Physiol Heart Circ Physiol 282:H1467–1477
|
25 |
Heissmeyer V,Macian F, Im SH, Varma R, Feske S, Venuprasad K, Gu H, Liu YC, Dustin ML, Rao A (2004) Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 5:255–265
|
26 |
Huang H, Jeon MS, Liao L, Yang C, Elly C, Yates JR 3rd, Liu YC (2010) K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity 33:60–70
|
27 |
Hustad CM, Perry WL, Siracusa LD, Rasberry C, Cobb L, Cattanach BM, Kovatch R, Copeland NG, Jenkins NA (1995) Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140:255–265
|
28 |
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, KaelinWG Jr (2001) HIFalpha targeted for VHLmediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468
|
29 |
Izquierdo HM, Brandi P, Gomez MJ, Conde-Garrosa R, Priego E, Enamorado M, Martinez-Cano S, Sanchez I, Conejero L, Jimenez-Carretero D
|
30 |
Jellusova J, Cato MH, Apgar JR, Ramezani-Rad P, Leung CR, Chen C, Richardson AD, Conner EM, Benschop RJ, Woodgett JR
|
31 |
Jeon MS, Atfield A, Venuprasad K, Krawczyk C, Sarao R, Elly C, Yang C, Arya S, Bachmaier K, Su L
|
32 |
Jiang J, Wang N, Jiang Y, Tan H, Zheng J, Chen G, Jia Z (2015) Characterization of substrate binding of the WW domains in human WWP2 protein. FEBS Lett 589:1935–1942
|
33 |
Jin HS, Park Y, Elly C, Liu YC (2013) Itch expression by Treg cells controls Th2 inflammatory responses. J Clin Invest 123:4923–4934
|
34 |
Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RINGtype, E2-dependent ubiquitin-protein ligase. Science 286:309–312
|
35 |
Kaelin WG Jr, Maher ER (1998) The VHL tumour-suppressor gene paradigm. Trends Genet 14:423–426
|
36 |
Kallio PJ, Pongratz I, Gradin K, McGuire J, Poellinger L (1997) Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci USA 94:5667–5672
|
37 |
Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG Jr, Elledge SJ, Conaway RC
|
38 |
Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, Venuprasad K (2016) Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination. Nat Immunol 17:997–1004
|
39 |
Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004
|
40 |
Kojima H, Gu H, Nomura S, Caldwell CC, Kobata T, Carmeliet P, Semenza GL, Sitkovsky MV (2002) Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha-deficient chimeric mice. Proc Natl Acad Sci USA 99:2170–2174
|
41 |
Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37:937–953
|
42 |
Layman AAK, Sprout SL, Phillips D, Oliver PM (2017) Ndfip1 restricts Th17 cell potency by limiting lineage stability and proinflammatory cytokine production. Sci Rep 7:39649
|
43 |
Lee JH, Elly C,Park Y, Liu YC (2015) E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T Cell stability and suppressive capacity. Immunity 42:1062–1074
|
44 |
Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng M, Zou L, Elly C, Lee JH, Liu YC (2018) E3 ligase VHL promotes group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of interleukin-33 receptor. Immunity 48(258–270):e255
|
45 |
Liu YC (2004) Ubiquitin ligases and the immune response. Annu Rev Immunol 22:81–127
|
46 |
Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, Rider NL, Chikwava KR, Cummings OW, Morton DH
|
47 |
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369
|
48 |
Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K
|
49 |
Matsushita T,Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118:3420–3430
|
50 |
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature 399:271–275
|
51 |
Meng X, Grotsch B, Luo Y, Knaup KX, Wiesener MS, Chen XX,Jantsch J,Fillatreau S, Schett G, Bozec A (2018) Hypoxiainducible factor-1alpha is a critical transcription factor for IL-10- producing B cells in autoimmune disease. Nat Commun 9:251
|
52 |
Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537
|
53 |
Nakashima H, Hamaguchi Y, Watanabe R, Ishiura N, Kuwano Y, Okochi H, Takahashi Y, Tamaki K, Sato S,Tedder TF
|
54 |
Neumann AK, Yang J, Biju MP, Joseph SK, Johnson RS, Haase VH, Freedman BD, Turka LA (2005) Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci USA 102:17071–17076
|
55 |
O’Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM (2015) Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners. EMBO Rep 16:1699–1712
|
56 |
Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C
|
57 |
Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41:518–528
|
58 |
Perry WL, Hustad CM, Swing DA, O’Sullivan TN, Jenkins NA, Copeland NG (1998) The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet 18:143–146
|
59 |
Phan AT, Doedens AL, Palazon A, Tyrakis PA, Cheung KP, Johnson RS, Goldrath AW (2016) Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity 45:1024–1037
|
60 |
Riling C, Kamadurai H, Kumar S, O’Leary CE, Wu KP, Manion EE, Ying M, Schulman BA, Oliver PM (2015) Itch WW domains inhibit its E3 ubiquitin ligase activity by blocking E2-E3 ligase transthiolation. J Biol Chem 290:23875–23887
|
61 |
Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811
|
62 |
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376
|
63 |
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE
|
64 |
Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461
|
65 |
Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO
|
66 |
Venuprasad K, Elly C, Gao M, Salek-Ardakani S, Harada Y, Luo JL, Yang C, Croft M, Inoue K, Karin M
|
67 |
Venuprasad K, Huang H, Harada Y,Elly C, Subramaniam M, Spelsberg T, Su J, Liu YC (2008) The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 9:245–253
|
68 |
Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N
|
69 |
Xiao N, Eto D, Elly C, Peng G, Crotty S, Liu YC (2014) The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol 15:657–666
|
70 |
Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420
|
71 |
Zhu K, Shan Z, Chen X, Cai Y, Cui L, Yao W, Wang Z, Shi P, Tian C, Lou J
|
/
〈 | 〉 |