LETTER

Engineering vascularized skeletal muscle tissue with transcriptional factor ETV2-induced autologous endothelial cells

  • Guanrong Yan 1 ,
  • Ruibin Yan 1 ,
  • Cheng Chen 1 ,
  • Cheng Chen 1 ,
  • Yanqiu Zhao 1 ,
  • Wei Qin 1 ,
  • Matthew B. Veldman 2 ,
  • Song Li 1 ,
  • Shuo Lin , 1,2
Expand
  • 1. Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen 518055, China
  • 2. Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-1555, USA

Published date: 21 Feb 2019

Copyright

2018 The Author(s) 2018

Cite this article

Guanrong Yan , Ruibin Yan , Cheng Chen , Cheng Chen , Yanqiu Zhao , Wei Qin , Matthew B. Veldman , Song Li , Shuo Lin . Engineering vascularized skeletal muscle tissue with transcriptional factor ETV2-induced autologous endothelial cells[J]. Protein & Cell, 2019 , 10(3) : 217 -222 . DOI: 10.1007/s13238-018-0542-7

1
Aranguren XL, Agirre X, Beerens M, Coppiello G, Uriz M, Vandersmissen I, Benkheil M, Panadero J, Aguado N, Pascual-Montano A (2013) Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature. Blood 122:3982–3992

DOI

2
Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

DOI

3
Bhasin M, Yuan L, Keskin DB, Otu HH, Libermann TA, Oettgen P (2010) Bioinformatic identification and characterization of human endothelial cell-restricted genes. BMC Genomics 11:342

DOI

4
Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195

DOI

5
Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014

DOI

6
Koffler J, Kaufman-Francis K, Shandalov Y, Egozi D, Pavlov DA, Landesberg A, Levenberg S (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci U S A 108:14789–14794

DOI

7
Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 99:4391–4396

DOI

8
Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A 100:12741–12746

DOI

9
Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

DOI

10
Lindgren AG, Veldman MB, Lin S (2015) ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells. Cell Regen (Lond) 4:1

DOI

11
Morita R, Suzuki M, Kasahara H, Shimizu N, Shichita T, Sekiya T, Kimura A, Sasaki K, Yasukawa H, Yoshimura A (2015) ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci U S A 112:160–165

DOI

12
Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

DOI

13
Sumanas S, Lin S (2006) Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol 4:e10

DOI

14
Veldman MB, Zhao C, Gomez GA, Lindgren AG, Huang H, Yang H, Yao S, Martin BL, Kimelman D, Lin S (2013) Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2. PLoS Biol 11:e1001590

DOI

15
Webster C, Pavlath GK, Parks DR, Walsh FS, Blau HM (1988) Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp Cell Res 174:252–265

DOI

Outlines

/