LETTER

Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants

  • Lei Yang 1 ,
  • Xiaohui Zhang 1 ,
  • Liren Wang 1 ,
  • Shuming Yin 1 ,
  • Biyun Zhu 1 ,
  • Ling Xie 1 ,
  • Qiuhui Duan 1 ,
  • Huiqiong Hu 1,2 ,
  • Rui Zheng 3 ,
  • Yu Wei 1 ,
  • Liangyue Peng 1,4 ,
  • Honghui Han 5 ,
  • Jiqin Zhang 1 ,
  • Wenjuan Qiu 3 ,
  • Hongquan Geng 3 ,
  • Stefan Siwko 6 ,
  • Xueli Zhang 1,2 ,
  • Mingyao Liu 1,6 ,
  • Dali Li , 1
Expand
  • 1. East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
  • 2. Fengxian Hospital Affiliated to Southern Medical University, Shanghai 201499, China
  • 3. Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
  • 4. School of Life Sciences, Hunan Normal University, Changsha 410081, China
  • 5. Bioray Laboratories Inc., Shanghai 200241, China
  • 6. Department of Molecular and Cellular Medicine, The Institute of Biosciences and Technology, Texas AM University Health Science Center, Houston, TX 77030, USA

Published date: 21 Sep 2018

Copyright

2018 The Author(s)

Cite this article

Lei Yang , Xiaohui Zhang , Liren Wang , Shuming Yin , Biyun Zhu , Ling Xie , Qiuhui Duan , Huiqiong Hu , Rui Zheng , Yu Wei , Liangyue Peng , Honghui Han , Jiqin Zhang , Wenjuan Qiu , Hongquan Geng , Stefan Siwko , Xueli Zhang , Mingyao Liu , Dali Li . Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants[J]. Protein & Cell, 2018 , 9(9) : 814 -819 . DOI: 10.1007/s13238-018-0568-x

1
Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261. https://doi.org/10.1126/science.1067338

DOI

2
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471. https://doi.org/10.1038/nature24644

DOI

3
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989. https://doi.org/10.1038/nbt.3290

DOI

4
Keeling KM, Xue X, Gunn G, Bedwell DM (2014) Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 15:371–394. https://doi.org/10.1146/annurev-genom-091212-153527

DOI

5
Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33:1293–1298. https://doi.org/10.1038/nbt.3404

DOI

6
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485. https://doi.org/10.1038/nature14592

DOI

7
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

DOI

8
Kroos MA, Kirschner J, Gellerich FN, Hermans MMP, Van der Ploeg AT, Reuser AJJ, Korinthenberg R (2004) A case of childhood Pompe disease demonstrating phenotypic variability of p. Asp645Asn. Neuromuscul Disord 14:371–374. https://doi.org/10.1016/j.nmd.2004.02.012

DOI

9
Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, Lu Z, Zhang Y, Wu J, Huang X (2018) Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 36:324–327. https://doi.org/10.1038/nbt.4102

DOI

10
Liu Z, Lu Z, Yang G, Yang G, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y (2018) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9:2338. https://doi.org/10.1038/s41467-018-04768-7

DOI

11
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. https://doi.org/10.1126/science.aaf8729

DOI

12
Ryu S-M, Koo T, Kim K, Lim K, Baek G, Kim S-T, Kim HS, Kim D, Lee H, Chung E (2017) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. https://doi.org/10.1038/nbt.4148

DOI

13
Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, Wang M, Yin S, Han H, Zeng L (2018) Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. J Biol Chem. https://doi.org/10.1074/jbc.RA117.000347

DOI

14
Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-060815-014607

DOI

15
Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, Yao N, Zhong W, Li Y, Li W (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8(10):772–775

DOI

Outlines

/