[1] Abad, J.D., Wrzensinski, C., Overwijk, W., De Witte, M.A., Jorritsma, A., Hsu, C., Gattinoni, L., Cohen, C.J., Paulos, C.M., Palmer, D.C., (2008). T-cell receptor gene therapy of established tumors in a murine melanoma model. J Immunother 31, 1–6 .18157006
[2] Bergamaschi, C., Rosati, M., Jalah, R., Valentin, A., Kulkarni, V., Alicea, C., Zhang, G.M., Patel, V., Felber, B.K., and Pavlakis, G.N. (2008). Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 283, 4189–4199 .18055460
[3] Black, M.E., Newcomb, T.G., Wilson, H.M., and Loeb, L.A. (1996). Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A 93, 3525–3529 .8622970
[4] Burkett, P.R., Koka, R., Chien, M., Chai, S., Boone, D.L., and Ma, A. (2004). Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 200, 825–834 .15452177
[5] Cohen, P.A., Peng, L., Plautz, G.E., Kim, J.A., Weng, D.E., and Shu, S. (2000). CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol 20, 17–56 .10770269
[6] Cosman, D., Kumaki, S., Ahdieh, M., Eisenman, J., Grabstein, K.H., Paxton, R., DuBose, R., Friend, D., Park, L.S., Anderson, D., (1995). Interleukin 15 and its receptor. Ciba Found Symp 195, 221–229, discussion 229-233 .8724840
[7] Cox, A.L., Skipper, J., Chen, Y., Henderson, R.A., Darrow, T.L., Shabanowitz, J., Engelhard, V.H., Hunt, D.F., and Slingluff, C.L. Jr. (1994). Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264, 716–719 .7513441
[8] Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E.H., and Blaese, R.M. (1992). In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 .1317968
[9] Disis, M.L., Gooley, T.A., Rinn, K., Davis, D., Piepkorn, M., Cheever, M.A., Knutson, K.L., and Schiffman, K. (2002). Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20, 2624–2632 .12039923
[10] Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R., Restifo, N.P., Hubicki, A.M., (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 .12242449
[11] Dunbar, P.R., Chen, J.L., Chao, D., Rust, N., Teisserenc, H., Ogg, G.S., Romero, P., Weynants, P., and Cerundolo, V. (1999). Cutting edge: rapid cloning of tumor-specific CTL suitable for adoptive immunotherapy of melanoma. J Immunol 162, 6959–6962 .10358133
[12] Gattinoni, L., Powell, D.J. Jr, Rosenberg, S.A., and Restifo, N.P. (2006). Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6, 383–393 .16622476
[13] Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M.P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C.S., Pawliuk, R., Morillon, E., (2003). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 .14564000
[14] Judge, A.D., Zhang, X., Fujii, H., Surh, C.D., and Sprent, J. (2002). Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 196, 935–946 .12370255
[15] June, C.H. (2007a). Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117, 1466–1476 .17549249
[16] June, C.H. (2007b). Principles of adoptive T cell cancer therapy. J Clin Invest 117, 1204–1212 .17476350
[17] Klebanoff, C.A., Finkelstein, S.E., Surman, D.R., Lichtman, M.K., Gattinoni, L., Theoret, M.R., Grewal, N., Spiess, P.J., Antony, P.A., Palmer, D.C., (2004). IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101, 1969–1974 .14762166
[18] Ladekarl, M., Agger, R., Fleischer, C.C., Hokland, M., Hulgaard, E.F., Kirkin, A., von der Maase, H., Petersen, M.S., Rytter, C., Zeuthen, J., (2004). Detection of circulating tumor lysate-reactive CD4+ T cells in melanoma patients. Cancer Immunol Immunother 53, 560–566 .14985861
[19] Leen, A.M., Rooney, C.M., and Foster, A.E. (2007). Improving T cell therapy for cancer. Annu Rev Immunol 25, 243–265 .17129181
[20] Li, Y., Zhi, W., Wareski, P., and Weng, N.P. (2005). IL-15 activates telomerase and minimizes telomere loss and may preserve the replicative life span of memory CD8+ T cells in vitro. J Immunol 174, 4019–4024 .15778359
[21] Marks-Konczalik, J., Dubois, S., Losi, J.M., Sabzevari, H., Yamada, N., Feigenbaum, L., Waldmann, T.A., and Tagaya, Y. (2000). IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A 97, 11445–11450 .11016962
[22] McGill, J., Van Rooijen, N., and Legge, K.L. (2010). IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J Exp Med 207, 521–534 .20212069
[23] Muranski, P., and Restifo, N.P. (2009). Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 21, 200–208 .19285848
[24] Phan, G.Q., Yang, J.C., Sherry, R.M., Hwu, P., Topalian, S.L., Schwartzentruber, D.J., Restifo, N.P., Haworth, L.R., Seipp, C.A., Freezer, L.J., (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100, 8372–8377 .12826605
[25] Qin, Z., and Blankenstein, T. (2000). CD4+ T cell—mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12, 677–686 .10894167
[26] Quezada, S.A., Simpson, T.R., Peggs, K.S., Merghoub, T., Vider, J., Fan, X., Blasberg, R., Yagita, H., Muranski, P., Antony, P.A., (2010). Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med 207, 637–650 .20156971
[27] Quintarelli, C., Vera, J.F., Savoldo, B., Giordano Attianese, G.M., Pule, M., Foster, A.E., Heslop, H.E., Rooney, C.M., Brenner, M.K., and Dotti, G. (2007). Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110, 2793–2802 .17638856
[28] Radfar, S., Wang, Y., and Khong, H.T. (2009). Activated CD4+ T cells dramatically enhance chemotherapeutic tumor responses in vitro and in vivo. J Immunol 183, 6800–6807 .19846868
[29] Rainov, N.G. (2000). A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11, 2389–2401 .11096443
[30] Schumacher, T.N. (2002). T-cell-receptor gene therapy. Nat Rev Immunol 2, 512–519 .12094225
[31] Schumacher, T.N., and Restifo, N.P. (2009). Adoptive T cell therapy of cancer. Curr Opin Immunol 21, 187–189 .19328668
[32] Sharma, S., Cantwell, M., Kipps, T.J., and Friedmann, T. (1996). Efficient infection of a human T-cell line and of human primary peripheral blood leukocytes with a pseudotyped retrovirus vector. Proc Natl Acad Sci U S A 93, 11842–11847 .8876225
[33] Teague, R.M., Sather, B.D., Sacks, J.A., Huang, M.Z., Dossett, M.L., Morimoto, J., Tan, X., Sutton, S.E., Cooke, M.P., Ohlén, C., (2006). Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12, 335–341 .16474399
[34] Toes, R.E., Ossendorp, F., Offringa, R., and Melief, C.J. (1999). CD4 T cells and their role in antitumor immune responses. J Exp Med 189, 753–756 .10049938
[35] Willimsky, G., and Blankenstein, T. (2005). Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 .16136144
[36] Xie, Y., Akpinarli, A., Maris, C., Hipkiss, E.L., Lane, M., Kwon, E.K., Muranski, P., Restifo, N.P., and Antony, P.A. (2010). Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 207, 651–667 .20156973