[1] Amin, R.H., and Schlissel, M.S. (2008). Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol 9, 613–622 .18469817
[2] Baracho, G.V., Miletic, A.V., Omori, S.A., Cato, M.H., and Rickert, R.C. (2011). Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol 23, 178–183 .21277760
[3] Calamito, M., Juntilla, M.M., Thomas, M., Northrup, D.L., Rathmell, J., Birnbaum, M.J., Koretzky, G., and Allman, D. (2010). Akt1 and Akt2 promote peripheral B-cell maturation and survival. Blood 115, 4043–4050 .20042722
[4] Chen, J., Limon, J.J., Blanc, C., Peng, S.L., and Fruman, D.A. (2010). Foxo1 regulates marginal zone B-cell development. Eur J Immunol 40, 1890–1896 .20449867
[5] Chowdhury, D., and Sen, R. (2004). Regulation of immunoglobulin heavy-chain gene rearrangements. Immunol Rev 200, 182–196 .15242405
[6] Dengler, H.S., Baracho, G.V., Omori, S.A., Bruckner, S., Arden, K.C., Castrillon, D.H., DePinho, R.A., and Rickert, R.C. (2008). Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol 9, 1388–1398 .18978794
[7] Facchinetti, V., Ouyang, W., Wei, H., Soto, N., Lazorchak, A., Gould, C., Lowry, C., Newton, A.C., Mao, Y., Miao, R.Q., (2008b). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27, 1932–1943 .18566586
[8] Feldman, M.E., Apsel, B., Uotila, A., Loewith, R., Knight, Z.A., Ruggero, D., and Shokat, K.M. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7, e38.19209957
[9] Frias, M.A., Thoreen, C.C., Jaffe, J.D., Schroder, W., Sculley, T., Carr, S.A., and Sabatini, D.M. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16, 1865–1870 .16919458
[10] Gingras, A.C., Raught, B., and Sonenberg, N. (2004). mTOR signaling to translation. Curr Top Microbiol Immunol 279, 169–197 .14560958
[11] Goldmit, M., and Bergman, Y. (2004). Monoallelic gene expression: a repertoire of recurrent themes. Immunol Rev 200, 197–214 .15242406
[12] Grawunder, U., Leu, T.M., Schatz, D.G., Werner, A., Rolink, A.G., Melchers, F., and Winkler, T.H. (1995). Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 .7584150
[13] Guertin, D.A., and Sabatini, D.M. (2009). The pharmacology of mTOR inhibition. Sci Signal 2, pe24.19383975
[14] Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11, 859–871 .17141160
[15] Harris, T.E., and Lawrence, J.C. Jr. (2003). TOR signaling. Sci STKE 2003, re15.14668532
[16] Hasham, M.G., Donghia, N.M., Coffey, E., Maynard, J., Snow, K.J., Ames, J., Wilpan, R.Y., He, Y., King, B.L., and Mills, K.D. (2010). Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol 11, 820–826 .20657597
[17] Herzog, S., Hug, E., Meixlsperger, S., Paik, J.H., DePinho, R.A., Reth, M., and Jumaa, H. (2008). SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat Immunol 9, 623–631 .18488031
[18] Herzog, S., Reth, M., and Jumaa, H. (2009). Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9, 195–205 .19240758
[19] Hietakangas, V., and Cohen, S.M. (2007). Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev 21, 632–637 .17369395
[20] Hoang, B., Frost, P., Shi, Y., Belanger, E., Benavides, A., Pezeshkpour, G., Cappia, S., Guglielmelli, T., Gera, J., and Lichtenstein, A. (2010). Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116, 4560–4568 .20686120
[21] Ikenoue, T., Inoki, K., Yang, Q., Zhou, X., and Guan, K.L. (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27, 1919–1931 .18566587
[22] Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S.Y., Huang, Q., Qin, J., and Su, B. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 .16962653
[23] Janes, M.R., Limon, J.J., So, L., Chen, J., Lim, R.J., Chavez, M.A., Vu, C., Lilly, M.B., Mallya, S., Ong, S.T., (2010). Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16, 205–213 .20072130
[24] Jung, D., and Alt, F.W. (2004). Unraveling V(D)J recombination; insights into gene regulation. Cell 116, 299–311 .14744439
[25] Kharas, M.G., Deane, J.A., Wong, S., O’Bosky, K.R., Rosenberg, N., Witte, O.N., and Fruman, D.A. (2004). Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103, 4268–4275 .14976048
[26] Kraus, M., Alimzhanov, M.B., Rajewsky, N., and Rajewsky, K. (2004). Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787–800 .15186779
[27] Lazorchak, A.S., Liu, D., Facchinetti, V., Di Lorenzo, A., Sessa, W.C., Schatz, D.G., and Su, B. (2010). Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell 39, 433–443 .20705244
[28] Li, Z., Dordai, D.I., Lee, J., and Desiderio, S. (1996). A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5, 575–589 .8986717
[29] Llorian, M., Stamataki, Z., Hill, S., Turner, M., and M?rtensson, I.L. (2007). The PI3K p110delta is required for down-regulation of RAG expression in immature B cells. J Immunol 178, 1981–1985 .17277100
[30] Mackay, F., Figgett, W.A., Saulep, D., Lepage, M., and Hibbs, M.L. (2010). B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 237, 205–225 .20727038
[31] Malin, S., McManus, S., and Busslinger, M. (2010). STAT5 in B cell development and leukemia. Curr Opin Immunol 22, 168–176 .20227268
[32] Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934 .12471243
[33] Oh, W.J., Wu, C.C., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B., and Jacinto, E. (2010). mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29, 3939–3951 .21045808
[34] Okkenhaug, K., Bilancio, A., Farjot, G., Priddle, H., Sancho, S., Peskett, E., Pearce, W., Meek, S.E., Salpekar, A., Waterfield, M.D., (2002). Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297, 1031–1034 .12130661
[35] Patke, A., Mecklenbr?uker, I., Erdjument-Bromage, H., Tempst, P., and Tarakhovsky, A. (2006). BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med 203, 2551–2562 .17060474
[36] Ramadani, F., Bolland, D.J., Garcon, F., Emery, J.L., Vanhaesebroeck, B., Corcoran, A.E., and Okkenhaug, K. (2010). The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. [Electronic Resource] Sci Signal 3, ra60.20699475
[37] Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.H., Hsu, P.P., Bagley, A.F., Markhard, A.L., and Sabatini, D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22, 159–168 .16603397
[38] Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 .15718470
[39] Schlissel, M.S. (2003). Regulating antigen-receptor gene assembly. Nat Rev Immunol 3, 890–899 .14668805
[40] Schlissel, M.S., and Stanhope-Baker, P. (1997). Accessibility and the developmental regulation of V(D)J recombination. Semin Immunol 9, 161–170 .9200327
[41] Srinivasan, L., Sasaki, Y., Calado, D.P., Zhang, B., Paik, J.H., DePinho, R.A., Kutok, J.L., Kearney, J.F., Otipoby, K.L., and Rajewsky, K. (2009). PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 .19879843
[42] Stadanlick, J.E., Kaileh, M., Karnell, F.G., Scholz, J.L., Miller, J.P., Quinn, W.J. 3rd, Brezski, R.J., Treml, L.S., Jordan, K.A., Monroe, J.G., (2008). Tonic B cell antigen receptor signals supply an NF-kappaB substrate for prosurvival BLyS signaling. Nat Immunol 9, 1379–1387 .18978795
[43] Staszewski, O., Baker, R.E., Ucher, A.J., Martier, R., Stavnezer, J., and Guikema, J.E. (2011). Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell 41, 232–242 .21255732
[44] Tsai, A.G., Lu, H., Raghavan, S.C., Muschen, M., Hsieh, C.L., and Lieber, M.R. (2008). Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 .19070581
[45] Verkoczy, L., Duong, B., Skog, P., A?t-Azzouzene, D., Puri, K., Vela, J.L., and Nemazee, D. (2007). Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J Immunol 178, 6332–6341 .17475862
[46] Wang, J.H., Alt, F.W., Gostissa, M., Datta, A., Murphy, M., Alimzhanov, M.B., Coakley, K.M., Rajewsky, K., Manis, J.P., and Yan, C.T. (2008). Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med 205, 3079–3090 .19064702
[47] Wang, J.H., Gostissa, M., Yan, C.T., Goff, P., Hickernell, T., Hansen, E., Difilippantonio, S., Wesemann, D.R., Zarrin, A.A., Rajewsky, K., (2009). Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 460, 231–236 .19587764
[48] Wicker, L.S., Boltz, R.C. Jr, Matt, V., Nichols, E.A., Peterson, L.B., and Sigal, N.H. (1990). Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol 20, 2277–2283 .1700753
[49] Wu, Y.-T., Ouyang, W., Lazorchak, A.S., Liu, D., Shen, H.-M., and Su, B. (2011). mTOR Complex 2 Targets Akt for Proteasomal Degradation via Phosphorylation at the Hydrophobic Motif. J Biol Chem 286, 14190–14198 .
[50] Wullschleger, S., Loewith, R., and Hall, M.N. (2006a). TOR signaling in growth and metabolism. Cell 124, 471–484 .16469695
[51] Yamane, A., Resch, W., Kuo, N., Kuchen, S., Li, Z., Sun, H.W., Robbiani, D.F., McBride, K., Nussenzweig, M.C., and Casellas, R. (2011). Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol 12, 62–69 .21113164
[52] Zeng, Z., Sarbassov, D.D., Samudio, I.J., Yee, K.W.L., Munsell, M.F., Ellen Jackson, C., Giles, F.J., Sabatini, D.M., Andreeff, M., and Konopleva, M. (2007). Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML Blood 109, 3509– 3512 .
[53] Zhang, L., Reynolds, T.L., Shan, X., and Desiderio, S. (2011). Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 34, 163–174 .21349429
[54] Zhu, C., Mills, K.D., Ferguson, D.O., Lee, C., Manis, J., Fleming, J., Gao, Y., Morton, C.C., and Alt, F.W. (2002). Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 .12110179