[1] Amaya, F., Decosterd, I., Samad, T.A., Plumpton, C., Tate, S., Mannion, R.J., Costigan, M., and Woolf, C.J. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol Cell Neurosci 15, 331-342 .10845770
[2] Beckh, S., Noda, M., Lübbert, H., and Numa, S. (1989). Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8, 3611-3616 .2555170
[3] Benzinger, G.R., Kyle, J.W., Blumenthal, K.M., and Hanck, D.A. (1998). A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem 273, 80-84 .9417050
[4] Black, J.A., Dib-Hajj, S., McNabola, K., Jeste, S., Rizzo, M.A., Kocsis, J.D., and Waxman, S.G. (1996). Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res Mol Brain Res 43, 117-131 .9037525
[5] Catterall, W.A. (1995). Structure and function of voltage-gated ion channels. Annu Rev Biochem 64, 493-531 .7574491
[6] Catterall, W.A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25 .10798388
[7] Cestèle, S., and Catterall, W.A. (2000). Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82, 883-892 .11086218
[8] Cestèle, S., Kopeyan, C., Oughideni, R., Mansuelle, P., Granier, C., and Rochat, H. (1997). Biochemical and pharmacological characterization of a depressant insect toxin from the venom of the scorpion Buthacus arenicola. Eur J Biochem 243, 93-99 .9030726
[9] Cestèle, S., Qu, Y., Rogers, J.C., Rochat, H., Scheuer, T., and Catterall, W.A. (1998). Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21, 919-931 .9808476
[10] Cestèle, S., Yarov-Yarovoy, V., Qu, Y., Sampieri, F., Scheuer, T., and Catterall, W.A. (2006). Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem 281, 21332-21344 .16679310
[11] Chai, Z.F., Bai, Z.T., Liu, T., Pang, X.Y., and Ji, Y.H. (2006a). The binding of BmK IT2 on mammal and insect sodium channels by surface plasmon resonance assay. Pharmacol Res 54, 85-90 .16616856
[12] Chai, Z.F., Zhu, M.M., Bai, Z.T., Liu, T., Tan, M., Pang, X.Y., and Ji, Y.H. (2006b). Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 399, 445-453 .16800812
[13] Cohen, L., Ilan, N., Gur, M., Stühmer, W., Gordon, D., and Gurevitz, M. (2007). Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem 282, 29424-29430 .17686768
[14] Couraud, F., Jover, E., Dubois, J.M., and Rochat, H. (1982). Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20, 9-16 .6281941
[15] Darbon, H., Jover, E., Couraud, F., and Rochat, H. (1983). Photoaffinity labeling of alpha- and beta- scorpion toxin receptors associated with rat brain sodium channel. Biochem Biophys Res Commun 115, 415-422 .6312978
[16] De Lima, M.E., Figueiredo, S.G., Pimenta, A.M., Santos, D.M., Borges, M.H., Cordeiro, M.N., Richardson, M., Oliveira, L.C., Stankiewicz, M., and Pelhate, M. (2007). Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 146, 264-279 .17218159
[17] Dib-Hajj, S.D., Black, J.A., Cummins, T.R., Kenney, A.M., Kocsis, J.D., and Waxman, S.G. (1998). Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo. J Neurophysiol 79, 2668-2676 .9582237
[18] Dong, K. (1997). A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem Mol Biol 27, 93-100 .9066120
[19] Feng, G., Deák, P., Chopra, M., and Hall, L.M. (1995). Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell 82, 1001-1011 .7553842
[20] Goldin, A.L. (2002). Evolution of voltage-gated Na(+) channels. J Exp Biol 205, 575-584 .11907047
[21] Gordon, D., Savarin, P., Gurevitz, M., and Zinn-Justin, S. (1998). Functional anatomy of scorpion toxins affecting sodium channels. J Toxicol Toxin Rev 2, 131-159 .
[22] Goudet, C., Chi, C.W., and Tytgat, J. (2002). An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon 40, 1239-1258 .12220709
[23] He, H., Liu, Z., Dong, B., Zhang, J., Shu, X., Zhou, J., and Ji, Y. (2011). Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2. PLoS ONE 6, e14510.21264295
[24] He, H., Liu, Z., Dong, B., Zhou, J., Zhu, H., and Ji, Y. (2010). Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J 431, 289-298 .20678086
[25] Ji, Y.H., Li, Y.J., Zhang, J.W., Song, B.L., Yamaki, T., Mochizuki, T., Hoshino, M., and Yanaihara, N. (1999). Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon 37, 519-536 .10080355
[26] Ji, Y.H., and Liu, T. (2008). The study of sodium channels involved in pain responses using specific modulators. Sheng Li Xue Bao 60, 628-634 .18958371
[27] Ji, Y.H., Mansuelle, P., Terakawa, S., Kopeyan, C., Yanaihara, N., Hsu, K., and Rochat, H. (1996). Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity. Toxicon 34, 987-1001 .8896191
[28] Ji, Y.H., Mansuelle, P., Xu, K., Granier, C., Kopeyan, C., Terakawa, S., and Rochat, H. (1994). Amino acid sequence of an excitatory insect-selective toxin (BmK IT) from venom of the scorpion Buthus martensi Karsch. Sci China B 37, 42-49 .8068186
[29] Ji, Y.H., Wang, W.X., Wang, Q., and Huang, Y.P. (2002). The binding of BmK abT, a unique neurotoxin, to mammal brain and insect Na(+) channels using biosensor. Eur J Pharmacol 454, 25-30 .12409001
[30] Jia, L.Y., Xie, H.F., and Ji, Y.H. (2000). Characterization of four distinct monoclonal antibodies specific to BmK AS-1, a novel scorpion bioactive polypeptide. Toxicon 38, 605-617 .10673154
[31] Jia, L.Y., Zhang, J.W., and Ji, Y.H. (1999). Biosensor binding assay of BmK AS-1, a novel Na+ channel-blocking scorpion ligand on rat brain synaptosomes. Neuroreport 10, 3359-3362 .10599845
[32] Kontis, K.J., Rounaghi, A., and Goldin, A.L. (1997). Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol 110, 391-401 .9379171
[33] Legros, C., Martin-Eauclaire, M.F., and Cattaert, D. (1998). The myth of scorpion suicide: are scorpions insensitive to their own venom? J Exp Biol 201, 2625-2636 .9716514
[34] Leipold, E., Hansel, A., Borges, A., and Heinemann, S.H. (2006). Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol 70, 340-347 .16638971
[35] Leipold, E., Lu, S., Gordon, D., Hansel, A., and Heinemann, S.H. (2004). Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3. Mol Pharmacol 65, 685-691 .14978247
[36] Li, Y.J., and Ji, Y.H. (2000). Binding characteristics of BmK I, an alpha-like scorpion neurotoxic polypeptide, on cockroach nerve cord synaptosomes. J Pept Res 56, 195-200 .11083058
[37] Li, Y.J., Liu, Y., and Ji, Y.H. (2000a). BmK AS: new scorpion neurotoxin binds to distinct receptor sites of mammal and insect voltage-gated sodium channels. J Neurosci Res 61, 541-548 .10956424
[38] Li, Y.J., Tan, Z.Y., and Ji, Y.H. (2000b). The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neurosci Res 38, 257-264 .11070192
[39] Liu, Z., Chung, I., and Dong, K. (2001). Alternative splicing of the BSC1 gene generates tissue-specific isoforms in the German cockroach. Insect Biochem Mol Biol 31, 703-713 .11267908
[40] Loughney, K., Kreber, R., and Ganetzky, B. (1989). Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 58, 1143-1154 .2550145
[41] Ma Z., T. L., Lu S., Kong J., Gordon D., Kallen R.G., (2000). The domain 4 S3-S4 extracellular loop provides molecular determinants for binding of α-scorpion toxins (LqhII, and LqhαIT) to the voltage-gated rat skeletal muscle Na+ channel (rSkM1). Biophys Soc Abstract .
[42] Mandel, G. (1992). Tissue-specific expression of the voltage-sensitive sodium channel. J Membr Biol 125, 193-205 .1313507
[43] Mantegazza, M., and Cestèle, S. (2005). Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels. J Physiol 568, 13-30 .16020455
[44] Mitrovic, N., George, A.L. Jr, and Horn, R. (1998). Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment. J Gen Physiol 111, 451-462 .9482711
[45] Ramaswami, M., and Tanouye, M.A. (1989). Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci USA 86, 2079-2082 .2538830
[46] Renganathan, M., Dib-Hajj, S., and Waxman, S.G. (2002). Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res Mol Brain Res 106, 70-82 .12393266
[47] Rogart, R.B., Cribbs, L.L., Muglia, L.K., Kephart, D.D., and Kaiser, M.W. (1989). Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci USA 86, 8170-8174 .2554302
[48] Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T., and Catterall, W.A. (1996). Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem 271, 15950-15962 .8663157
[49] Smith, T.J., Lee, S.H., Ingles, P.J., Knipple, D.C., and Soderlund, D.M. (1997). The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. Insect Biochem Mol Biol 27, 807-812 .9474777
[50] Soderlund, D.M., and Knipple, D.C. (2003). The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33, 563-577 .12770575
[51] Tan, J., Liu, Z., Nomura, Y., Goldin, A.L., and Dong, K. (2002a). Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci 22, 5300-5309 .12097481
[52] Tan, J., Liu, Z., Tsai, T.D., Valles, S.M., Goldin, A.L., and Dong, K. (2002b). Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin. Insect Biochem Mol Biol 32, 445-454 .11886779
[53] Tan, J., Liu, Z., Wang, R., Huang, Z.Y., Chen, A.C., Gurevitz, M., and Dong, K. (2005). Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol 67, 513-522 .15525757
[54] Tan, Z.Y., Xiao, H., Mao, X., Wang, C.Y., Zhao, Z.Q., and Ji, Y.H. (2001). The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na(+) channels. Neuropharmacology 40, 352-357 .11166328
[55] Tejedor, F.J., and Catterall, W.A. (1988). Site of covalent attachment of alpha-scorpion toxin derivatives in domain I of the sodium channel alpha subunit. Proc Natl Acad Sci USA 85, 8742-8746 .2847174
[56] Terakawa, S., Kimura, Y., Hsu, K., and Ji, Y.H. (1989). Lack of effect of a neurotoxin from the scorpion Buthus martensi Karsch on nerve fibers of this scorpion. Toxicon 27, 569-578 .2546294
[57] Thackeray, J.R., and Ganetzky, B. (1994). Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J Neurosci 14, 2569-2578 .8182428
[58] Thomsen, W.J., and Catterall, W.A. (1989). Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci USA 86, 10161-10165 .2557622
[59] Trimmer, J.S., Cooperman, S.S., Tomiko, S.A., Zhou, J.Y., Crean, S.M., Boyle, M.B., Kallen, R.G., Sheng, Z.H., Barchi, R.L., Sigworth, F.J., (1989). Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 33-49 .2559760
[60] Trimmer, J.S., and Rhodes, K.J. (2004). Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66, 477-519 .14977411
[61] Wang, R., Huang, Z.Y., and Dong, K. (2003). Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem Mol Biol 33, 733-739 .12826100
[62] Warmke, J.W., Reenan, R.A., Wang, P., Qian, S., Arena, J.P., Wang, J., Wunderler, D., Liu, K., Kaczorowski, G.J., Van der Ploeg, L.H., (1997). Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J Gen Physiol 110, 119-133 .9236205
[63] Zuo, X.P., He, H.Q., He, M., Liu, Z.R., Xu, Q., Ye, J.G., and Ji, Y.H. (2006). Comparative pharmacology and cloning of two novel arachnid sodium channels: Exploring the adaptive insensitivity of scorpion to its toxins. FEBS Lett 580, 4508-4514 .16870180
[64] Zuo, X.P., and Ji, Y.H. (2004). Molecular mechanism of scorpion neurotoxins acting on sodium channels: insight into their diverse selectivity. Mol Neurobiol 30, 265-278 .15655252