[1] Bayliss, R., Littlewood, T., and Stewart, M. (2000). Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102, 99–108 .10929717
[2] Beck, M., F?rster, F., Ecke, M., Plitzko, J.M., Melchior, F., Gerisch, G., Baumeister, W., and Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 .15514115
[3] Bednenko, J., Cingolani, G., and Gerace, L. (2003). Importin β contains a COOH-terminal nucleoporin binding region important for nuclear transport. J Cell Biol 162, 391–401 .12885761
[4] Betzig, E. (1995). Proposed method for molecular optical imaging. Opt Lett 20, 237–239 .19859146
[5] Bischoff, F.R., and G?rlich, D. (1997). RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport factors. FEBS Lett 419, 249–254 .9428644
[6] Bischoff, F.R., Klebe, C., Kretschmer, J., Wittinghofer, A., and Ponstingl, H. (1994). RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A 91, 2587–2591 .8146159
[7] Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F., and Roderick, H.L. (2009). An update on nuclear calcium signalling. J Cell Sci 122, 2337–2350 .19571113
[8] Brohawn, S.G., Partridge, J.R., Whittle, J.R.R., and Schwartz, T.U. (2009). Nuclear pore complex has entered the atomic age. Structure 17, 1156–1168 .
[9] Bustamante, C., Bryant, Z., and Smith, S.B. (2003). Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 .12540915
[10] Cardarelli, F., and Gratton, E. (2010). In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions. PLoS One 5, e10475.20454622
[11] Carmen, P.T., Marisa, J., and David, E.C. (1997). Nuclear calcium and the regulation of the nuclear pore complex. BioEssays 19, 787–792
[12] Cook, A., Bono, F., Jinek, M., and Conti, E. (2007). Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76, 647–671 .17506639
[13] Corbett, A.H., and Silver, P.A. (1997). Nucleocytoplasmic transport of macromolecules. Microbiol Mol Biol Rev 61, 193–211 .9184010
[14] Coutavas, E., Ren, M., Oppenheim, J.D., D’Eustachio, P., and Rush, M.G. (1993). Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366, 585–587 .8255297
[15] Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., and Matunis, M.J. (2002). Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158, 915–927 .12196509
[16] Dange, T., Grünwald, D., Grünwald, A., Peters, R., and Kubitscheck, U. (2008). Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J Cell Biol 183, 77–86 .18824568
[17] Danker, T. and Oberleithner, H. (2000). Nuclear pore function viewed with atomic force microscopy. Pflügers Arch 439, 671–681 .10784340
[18] Denning, D.P., Patel, S.S., Uversky, V., Fink, A.L., and Rexach, M. (2003). Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A 100, 2450–2455 .12604785
[19] Erickson, E.S., Mooren, O.L., Moore, D., Krogmeier, J.R., and Dunn, R.C. (2006). The role of nuclear envelope calcium in modifying nuclear pore complex structure. Can J Physiol Pharmacol 84, 309–318 .16902578
[20] Erickson, E.S., Mooren, O.L., Moore-Nichols, D., and Dunn, R.C. (2004). Activation of ryanodine receptors in the nuclear envelope alters the conformation of the nuclear pore complex. Biophys Chem 112, 1–7 .15501570
[21] Fahrenkrog, B., and Aebi, U. (2003). The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4, 757–766 .14570049
[22] Fernández-Suárez, M., and Ting, A.Y. (2008). Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9, 929–943 .19002208
[23] Frey, N., McKinsey, T.A., and Olson, E.N. (2000). Decoding calcium signals involved in cardiac growth and function. Nat Med 6, 1221–1227 .11062532
[24] Fried, H., and Kutay, U. (2003). Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60, 1659–1688 .14504656
[25] Gensburger, C., Freyermuth, S., Klein, C., and Malviya, A.N. (2003). In vivo nuclear Ca2+-ATPase phosphorylation triggers intermediate size molecular transport to the nucleus. Biochem Biophys Res Commun 303, 1225–1228 .12684066
[26] Gerasimenko, J., Maruyama, Y., Tepikin, A., Petersen, O.H., and Gerasimenko, O. (2003). Calcium signalling in and around the nuclear envelope. Biochem Soc Trans 31, 76–78 .12546657
[27] Greber, U.F., and Gerace, L. (1992). Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J Cell Biol 116, 15–30 .1370490
[28] Greber, U.F., and Gerace, L. (1995). Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol 128, 5–14 .7822421
[29] Greber, U.F., Senior, A., and Gerace, L. (1990). A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J 9, 1495–1502 .2184032
[30] Hess, H.F., Betzig, E., Harris, T.D., Pfeiffer, L.N., and West, K.W. (1994). Near-field spectroscopy of the quantum constituents of a luminescent system. Science 264, 1740–1745 .17839907
[31] Isgro, T.A., and Schulten, K. (2005). Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Structure 13, 1869–1879 .16338415
[32] Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I.W., and G?rlich, D. (1997). The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16, 6535–6547 .9351834
[33] J?ggi, R.D., Franco-Obregón, A., Mühlh?usser, P., Thomas, F., Kutay, U., and Ensslin, K. (2003). Modulation of nuclear pore topology by transport modifiers. Biophys J 84, 665–670 .12524319
[34] Kahms, M., Lehrich, P., Hüve, J., Sanetra, N., and Peters, R. (2009). Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic 10, 1228–1242 .19548985
[35] Kass, G.E., and Orrenius, S. (1999). Calcium signaling and cytotoxicity. Environ Health Perspect 107, 25–35 .10229704
[36] Kau, T.R., Way, J.C., and Silver, P.A. (2004). Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4, 106–117 .14732865
[37] Kramer, A., Ludwig, Y., Shahin, V., and Oberleithner, H. (2007). A pathway separate from the central channel through the nuclear pore complex for inorganic ions and small macromolecules. J Biol Chem 282, 31437–31443 .17726020
[38] Kubitscheck, U., Grünwald, D., Hoekstra, A., Rohleder, D., Kues, T., Siebrasse, J.P., and Peters, R. (2005). Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168, 233–243 .15657394
[39] Lee, M.A., Dunn, R.C., Clapham, D.E., and Stehno-Bittel, L. (1998). Calcium regulation of nuclear pore permeability. Cell Calcium 23, 91–101 .
[40] Lee, S.J., Matsuura, Y., Liu, S.M., and Stewart, M. (2005). Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693–696 .15864302
[41] Lim, R., Aebi, U., and Fahrenkrog, B. (2008). Towards reconciling structure and function in the nuclear pore complex. Histoche Cell Biol 129, 105–116 .
[42] Lim, R.Y.H., Fahrenkrog, B., K?ser, J., Schwarz-Herion, K., Deng, J., and Aebi, U. (2007). Nanomechanical Basis of Selective Gating by the Nuclear Pore Complex. Science 318, 640–643 .
[43] Lippincott-Schwartz, J., and Patterson, G.H. (2009). Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19, 555–565 .19836954
[44] Liu, S.M., and Stewart, M. (2005). Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-beta homologue, Kap95p. J Mol Biol 349, 515–525 .15878174
[45] Lyman, S.K., Guan, T., Bednenko, J., Wodrich, H., and Gerace, L. (2002). Influence of cargo size on Ran and energy requirements for nuclear protein import. J Cell Biol 159, 55–67 .12370244
[46] Ma, J., and Yang, W. (2010). Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci U S A 107, 7305–7310 .20368455
[47] Malviya, A.N., and Klein, C. (2006). Mechanism regulating nuclear calcium signaling. Can J Physiol Pharmacol 84, 403–422 .16902586
[48] Mattson, M.P., LaFerla, F.M., Chan, S.L., Leissring, M.A., Shepel, P.N., and Geiger, J.D. (2000). Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23, 222–229 .10782128
[49] Miao, L., and Schulten, K. (2009). Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17, 449–459 .19278659
[50] Moore, M.S., and Blobel, G. (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 .8413630
[51] Moore-Nichols, D., Arnott, A., and Dunn, R.C. (2002). Regulation of nuclear pore complex conformation by IP(3) receptor activation. Biophys J 83, 1421–1428 .12202368
[52] Mooren, O.L., Erickson, E.S., Moore-Nichols, D., and Dunn, R.C. (2004). Nuclear side conformational changes in the nuclear pore complex following calcium release from the nuclear membrane. Phys Biol 1, 125–134 .16204829
[53] O'Brien, E.M., Gomes, D.A., Sehgal, S., and Nathanson, M.H. (2007). Hormonal Regulation of Nuclear Permeability. J Biol Chem 282, 4210–4217 .
[54] Patel, S.S., Belmont, B.J., Sante, J.M., and Rexach, M.F. (2007). Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 .17418788
[55] Patterson, G.H., and Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 .12228718
[56] Paulillo, S.M., Powers, M.A., Ullman, K.S., and Fahrenkrog, B. (2006). Changes in nucleoporin domain topology in response to chemical effectors. J Mol Biol 363, 39–50 .16962132
[57] Perez-Terzic, C., Gacy, A.M., Bortolon, R., Dzeja, P.P., Puceat, M., Jaconi, M., Prendergast, F.G., and Terzic, A. (1999). Structural plasticity of the cardiac nuclear pore complex in response to regulators of nuclear import. Circ Res 84, 1292–1301 .10364567
[58] Perez-Terzic, C., Jaconi, M., and Clapham, D.E. (1997). Nuclear calcium and the regulation of the nuclear pore complex. BioEssays 19, 787–792 9297969
[59] Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L., and Clapham, D.E. (1996). Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science 273, 1875–1877 .8791595
[60] Peters, R. (2009). Translocation through the nuclear pore: Kaps pave the way. Bioessays 31, 466–477 .19274657
[61] Rakowska, A., Danker, T., Schneider, S.W., and Oberleithner, H. (1998). ATP-Induced shape change of nuclear pores visualized with the atomic force microscope. J Membr Biol 163, 129–136 .9592077
[62] Rexach, M., and Blobel, G. (1995). Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 .8521485
[63] Rizzuto, R., and Pozzan, T. (2003). When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat Genet 34, 135–141 .12776115
[64] Rout, M.P., and Aitchison, J.D. (2001). The nuclear pore complex as a transport machine. J Biol Chem 276, 16593–16596 .11283009
[65] Rout, M.P., Aitchison, J.D., Magnasco, M.O., and Chait, B.T. (2003). Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13, 622–628 .14624840
[66] Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B.T. (2000). The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148, 635–651 .10684247
[67] Rout, M.P., and Blobel, G. (1993). Isolation of the yeast nuclear pore complex. J Cell Biol 123, 771–783 .8227139
[68] Rout, M.P., and Wente, S.R. (1994). Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4, 357–365 .14731624
[69] Stehno-Bittel, L., Lückhoff, A., and Clapham, D.E. (1995a). Calcium release from the nucleus by InsP3 receptor channels. Neuron 14, 163–167 .7530018
[70] Stehno-Bittel, L., Perez-Terzic, C., and Clapham, D.E. (1995b). Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270, 1835–1838 .8525380
[71] Stewart, M. (2007). Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8, 195–208 .17287812
[72] Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D., and Aebi, U. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J Mol Biol 328, 119–130 .12684002
[73] Stoffler, D., Goldie, K.N., Feja, B., and Aebi, U. (1999). Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J Mol Biol 287, 741–752 .10191142
[74] Stoffler, D., Schwarz-Herion, K., Aebi, U., and Fahrenkrog, B. (2006). Getting across the nuclear pore complex: new insights into nucleocytoplasmic transport. Can J Physiol Pharmacol 84, 499–507 .16902595
[75] Strawn, L.A., Shen, T., Shulga, N., Goldfarb, D.S., and Wente, S.R. (2004). Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6, 197–206 .15039779
[76] Strübing, C., and Clapham, D.E. (1999). Active nuclear import and export is independent of lumenal Ca2+ stores in intact mammalian cells. J Gen Physiol 113, 239–248 .9925822
[77] Suntharalingam, M., and Wente, S.R. (2003). Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4, 775–789 .12791264
[78] Thompson, R.E., Larson, D.R., and Webb, W.W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82, 2775–2783 .11964263
[79] Walther, T.C., Pickersgill, H.S., Cordes, V.C., Goldberg, M.W., Allen, T.D., Mattaj, I.W., and Fornerod, M. (2002). The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 158, 63–77 .12105182
[80] Wang, H., and Clapham, D.E. (1999). Conformational changes of the in situ nuclear pore complex. Biophys J 77, 241–247 .10388753
[81] Wei, X., Henke, V.G., Strübing, C., Brown, E.B., and Clapham, D.E. (2003). Real-time imaging of nuclear permeation by EGFP in single intact cells. Biophys J 84, 1317–1327 .12547812
[82] Weis, K. (2003). Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 .12600309
[83] Wozniak, R.W., Rout, M.P., and Aitchison, J.D. (1998). Karyopherins and kissing cousins. Trends Cell Biol 8, 184–188 .9695836
[84] Yang, W., Gelles, J., and Musser, S.M. (2004). Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci U S A 101, 12887–12892 .15306682
[85] Yang, W., and Musser, S.M. (2006a). Nuclear import time and transport efficiency depend on importin β concentration. J Cell Biol 174, 951–961 .
[86] Yang, W., and Musser, S.M. (2006b). Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy. Methods 39, 316–328 .16879979
[87] Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., and Selvin, P.R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 .12791999
[88] Yildiz, A., Tomishige, M., Vale, R.D., and Selvin, P.R. (2004). Kinesin walks hand-over-hand. Science 303, 676–678 .14684828
[89] Yokoyama, N., Hayashi, N., Seki, T., Panté, N., Ohba, T., Nishii, K., Kuma, K., Hayashida, T., Miyata, T., Aebi, U., (1995). A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 .7603572
[90] Zhuang, X. (2005). Single-molecule RNA science. Annu Rev Biophys Biomol Struct 34, 399–414 .15869396