[1] Anandalakshmi, R., Marathe, R., Ge, X., Herr, J.M. Jr, Mau, C., Mallory, A., Pruss, G., Bowman, L., and Vance, V.B. (2000). A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290, 142–144 .11021800
[2] Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H., and Vance, V.B. (1998). A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95, 13079–13084 .9789044
[3] Basler, C.F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H.D., García-Sastre, A., and Palese, P. (2000). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97, 12289–12294 .11027311
[4] Basu, A., Meyer, K., Ray, R.B., and Ray, R. (2001). Hepatitis C virus core protein modulates the interferon-induced transacting factors of Jak/Stat signaling pathway but does not affect the activation of downstream IRF-1 or 561 gene. Virology 288, 379–390 .11601909
[5] Beattie, E., Kauffman, E.B., Martinez, H., Perkus, M.E., Jacobs, B.L., Paoletti, E., and Tartaglia, J. (1996). Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 12, 89–94 .8879125
[6] Bennasser, Y., Le, S.Y., Benkirane, M., and Jeang, K.T. (2005). Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22, 607–619 .15894278
[7] Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 .11201747
[8] Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S.W., and Baulcombe, D.C. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17, 6739–6746 .9822616
[9] Bucher, E., Hemmes, H., de Haan, P., Goldbach, R., and Prins, M. (2004). The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 85, 983–991 .15039540
[10] Bucher, E., Sijen, T., De Haan, P., Goldbach, R., and Prins, M. (2003). Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77, 1329–1336 .12502849
[11] Cantaluppi, V., Biancone, L., Boccellino, M., Doublier, S., Benelli, R., Carlone, S., Albini, A., and Camussi, G. (2001). HIV type 1 Tat protein is a survival factor for Kaposi’s sarcoma and endothelial cells. AIDS Res Hum Retroviruses 17, 965–976 .11461682
[12] Chang, H.W., and Jacobs, B.L. (1993). Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 194, 537–547 .8099244
[13] Chang, H.W., Uribe, L.H., and Jacobs, B.L. (1995). Rescue of vaccinia virus lacking the E3L gene by mutants of E3L. J Virol 69, 6605–6608 .7666567
[14] Chen, D., Wang, M., Zhou, S., and Zhou, Q. (2002). HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. EMBO J 21, 6801–6810 .12486001
[15] Chen, J., Li, W.X., Xie, D., Peng, J.R., and Ding, S.W. (2004). Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microrna in host gene expression. Plant Cell 16, 1302–1313 .15100397
[16] Coleman, J.R. (2007). The PB1-F2 protein of Influenza A virus: increasing pathogenicity by disrupting alveolar macrophages. Virol J 4, 9.17224071
[17] Delgadillo, M.O., Sáenz, P., Salvador, B., García, J.A., and Simón-Mateo, C. (2004). Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J Gen Virol 85, 993–999 .15039541
[18] Ding, S.W. (2010). RNA-based antiviral immunity. Nat Rev Immunol 10, 632–644 .20706278
[19] Ding, S.W., and Voinnet, O. (2007). Antiviral immunity directed by small RNAs. Cell 130, 413–426 .17693253
[20] Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C., and Voinnet, O. (2004). Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 .15084715
[21] Dunoyer, P., Pfeffer, S., Fritsch, C., Hemmer, O., Voinnet, O., and Richards, K.E. (2002). Identification, subcellular localization and some properties of a cysteine-rich suppressor of gene silencing encoded by peanut clump virus. Plant J 29, 555–567 .11874569
[22] El Kharroubi, A., Piras, G., Zensen, R., and Martin, M.A. (1998). Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol 18, 2535–2544 .9566873
[23] Epie, N., Ammosova, T., Sapir, T., Voloshin, Y., Lane, W.S., Turner, W., Reiner, O., and Nekhai, S. (2005). HIV-1 Tat interacts with LIS1 protein. Retrovirology 2, 6.15698475
[24] Haasnoot, J., de Vries, W., Geutjes, E.J., Prins, M., de Haan, P., and Berkhout, B. (2007). The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3, e86.17590081
[25] Hartitz, M.D., Sunter, G., and Bisaro, D.M. (1999). The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology 263, 1–14 .10544077
[26] Hartman, A.L., Towner, J.S., and Nichol, S.T. (2004). A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 328, 177–184 .15464838
[27] Herrmann, C.H., and Rice, A.P.( 1995). Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 69, 1612–1620 .7853496
[28] Huang, J., Wang, F., Argyris, E., Chen, K., Liang, Z., Tian, H., Huang, W., Squires, K., Verlinghieri, G., and Zhang, H. (2007). Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13, 1241–1247 .17906637
[29] Isel, C., and Karn, J. (1999). Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. J Mol Biol 290, 929–941 .10438593
[30] Kasschau, K.D., and Carrington, J.C. (1998). A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470 .9827799
[31] Kasschau, K.D., Cronin, S., and Carrington, J.C. (1997). Genome amplification and long-distance movement functions associated with the central domain of tobacco etch potyvirus helper component-proteinase. Virology 228, 251–262 .9123832
[32] Kasschau, K.D., Xie, Z., Allen, E., Llave, C., Chapman, E.J., Krizan, K.A., and Carrington, J.C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4, 205–217 .12586064
[33] Kiernan, R.E., Vanhulle, C., Schiltz, L., Adam, E., Xiao, H., Maudoux, F., Calomme, C., Burny, A., Nakatani, Y., Jeang, K.T., (1999). HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18, 6106–6118 .10545121
[34] Kok, K.H., and Jin, D.Y. (2006). Influenza A virus NS1 protein does not suppress RNA interference in mammalian cells. J Gen Virol 87, 2639–2644 .16894203
[35] Kubota, K., Tsuda, S., Tamai, A., and Meshi, T. (2003). Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77, 11016–11026 .14512550
[36] Kubota, T., Yokosawa, N., Yokota, S., and Fujii, N. (2002). Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J Virol 76, 12676–12682 .12438593
[37] Lakatos, L., Szittya, G., Silhavy, D., and Burgyán, J. (2004). Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23, 876–884 .14976549
[38] Langland, J.O., and Jacobs, B.L. (2002). The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299, 133–141 .12167348
[39] Langland, J.O., Kash, J.C., Carter, V., Thomas, M.J., Katze, M.G., and Jacobs, B.L. (2006). Suppression of proinflammatory signal transduction and gene expression by the dual nucleic acid binding domains of the vaccinia virus E3L proteins. J Virol 80, 10083–10095 .17005686
[40] Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Sa?b, A., and Voinnet, O. (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 .15845854
[41] Li, H., Li, W.X., and Ding, S.W. (2002). Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 .12016316
[42] Li, W.X., Li, H., Lu, R., Li, F., Dus, M., Atkinson, P., Brydon, E.W., Johnson, K.L., García-Sastre, A., Ball, L.A., (2004). Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 101, 1350–1355 .14745017
[43] Lin, J., and Cullen, B.R.( 2007). Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 81, 12218–12226 .17855543
[44] Liu, L., Grainger, J., Ca?izares, M.C., Angell, S.M., and Lomonossoff, G.P. (2004). Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing. Virology 323, 37–48 .15165817
[45] Liu, Y., Li, J., Kim, B.O., Pace, B.S., and He, J.J. (2002). HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J Biol Chem 277, 23854–23863 .11959860
[46] Lu, R., Folimonov, A., Shintaku, M., Li, W.X., Falk, B.W., Dawson, W.O., and Ding, S.W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci U S A 101, 15742–15747 .15505219
[47] Moissiard, G., and Voinnet, O. (2004). Viral suppression of RNA silencing in plants. Mol Plant Pathol 5, 71–82 .20565584
[48] Mühlberger, E., Weik, M., Volchkov, V.E., Klenk, H.D., and Becker, S. (1999). Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73, 2333–2342 .9971816
[49] Nath, A., Psooy, K., Martin, C., Knudsen, B., Magnuson, D.S., Haughey, N., and Geiger, J.D.( 1996). Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70, 1475–1480 .8627665
[50] Olivieri, D., Sykora, M.M., Sachidanandam, R., Mechtler, K., and Brennecke, J. (2010). An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29, 3301–3317 .20818334
[51] Otsuka, M., Jing, Q., Georgel, P., New, L., Chen, J., Mols, J., Kang, Y.J., Jiang, Z., Du, X., Cook, R., (2007). Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27, 123–134 .17613256
[52] Pfeffer, S., Dunoyer, P., Heim, F., Richards, K.E., Jonard, G., and Ziegler-Graff, V. (2002). P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76, 6815–6824 .12050394
[53] Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Gr?sser, F.A., van Dyk, L.F., Ho, C.K., Shuman, S., Chien, M., (2005). Identification of microRNAs of the herpesvirus family. Nat Methods 2, 269–276 .15782219
[54] Pruss, G., Ge, X., Shi, X.M., Carrington, J.C., and Bowman Vance, V. (1997). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9, 859–868 .9212462
[55] Qu, F., Ren, T., and Morris, T.J. (2003). The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77, 511–522 .12477856
[56] Reed, J.C., Kasschau, K.D., Prokhnevsky, A.I., Gopinath, K., Pogue, G.P., Carrington, J.C., and Dolja, V.V. (2003). Suppressor of RNA silencing encoded by Beet yellows virus. Virology 306, 203–209 .12642093
[57] Reyes, C.A., De Francesco, A., Pena, E.J., Costa, N., Plata, M.I., Sendin, L., Castagnaro, A.P., and Garcia, M.L. (2011). Resistance to Citrus psorosis virus in transgenic sweet orange plants is triggered by coat protein-RNA silencing. J Biotechnol 151, 151–158 .
[58] Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946 .9634582
[59] Rusnati, M., and Presta, M. (2002). HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5, 141–151 .12831055
[60] Saunders, L.R., and Barber, G.N. (2003). The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J 17, 961–983 .12773480
[61] Silhavy, D., Molnár, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., and Burgyán, J. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21, 3070–3080 .12065420
[62] Song, L., Liu, H., Gao, S., Jiang, W., and Huang, W. (2010). Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 84, 8849–8860 .20554777
[63] Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S., and Okuno, T. (2002). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532, 75–79 .12459466
[64] Thomas, C.L., Leh, V., Lederer, C., and Maule, A.J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306, 33–41 .12620795
[65] van Rij, R.P. (2008). Virus meets RNAi. Symposium on antiviral applications of RNA interference. EMBO Rep 9, 725–729 .18636088
[66] Van Wezel, R., Liu, H., Wu, Z., Stanley, J., and Hong, Y. (2003). Contribution of the zinc finger to zinc and DNA binding by a suppressor of posttranscriptional gene silencing. J Virol 77, 696–700 .12477872
[67] van, W.R., Dong, X., Liu, H., Tien, P., Stanley, J., and Hong, Y. (2002). Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol Plant Microbe Interact 15, 203–208 .11952122
[68] Vance, V.B.( 1991). Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology 182, 486–494 .2024486
[69] Voinnet, O., Lederer, C., and Baulcombe, D.C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167 .11051555
[70] Voinnet, O., Pinto, Y.M., and Baulcombe, D.C. (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96, 14147–14152 .10570213
[71] Wang, Y., Kato, N., Jazag, A., Dharel, N., Otsuka, M., Taniguchi, H., Kawabe, T., and Omata, M. (2006). Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology 130, 883–892 .16530526
[72] Yang, X., Gold, M.O., Tang, D.N., Lewis, D.E., Aguilar-Cordova, E., Rice, A.P., and Herrmann, C.H. (1997). TAK, an HIV Tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. Proc Natl Acad Sci U S A 94, 12331–12336 .9356449
[73] Yelina, N.E., Savenkov, E.I., Solovyev, A.G., Morozov, S.Y., and Valkonen, J.P.( 2002). Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76, 12981–12991 .12438624
[74] Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 .10778853