REVIEW

The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get

  • Jia Yang ,
  • Jun Yu
Expand
  • State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong

Received date: 15 Mar 2018

Accepted date: 10 Apr 2018

Published date: 08 Jun 2018

Copyright

2018 The Author(s) 2018

Abstract

Despite the success of colonoscopy screening and recent advances in cancer treatment, colorectal cancer (CRC) still remains one of the most commonly diagnosed and deadly cancers, with a significantly increased incidence in developing countries where people are adapting to Western lifestyle. Diet has an important impact on risk of CRC. Multiple epidemiological studies have suggested that excessive animal protein and fat intake, especially red meat and processed meat, could increase the risk of developing CRC while fiber could protect against colorectal tumorigenesis. Mechanisms have been investigated by animal studies.Diet could re-shape the community structure of gut microbiota and influence its function by modulating the production of metabolites. Butyrate, one of the short-chain fatty acids (SCFAs), which act as a favorable source for colonocytes, could protect colonic epithelial cells from tumorigenesis via anti-inflammatory and antineoplastic properties through cell metabolism, microbiota homeostasis, antiproliferative, immunomodulatory and genetic/epigenetic regulation ways. In contrast, protein fermentation and bile acid deconjugation, which cause damage to colonic cells through proinflammatory and proneoplastic ways, lead to increasedriskofdevelopingCRC.In conclusion, abalanced diet with an increased abundance of fiber should be adopted to reduce the risk and prevent CRC.

Cite this article

Jia Yang , Jun Yu . The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein & Cell, 2018 , 9(5) : 474 -487 . DOI: 10.1007/s13238-018-0543-6

1
Alberts DS, Ritenbaugh C, Story JA, Aickin M, Rees-McGee S, Buller MK, Atwood J, Phelps J, Ramanujam PS, Bellapravalu S (1996) Randomized, double-blinded, placebo-controlled study of effect of wheat bran fiber and calcium on fecal bile acids in patients with resected adenomatous colon polyps. J Natl Cancer Inst 88:81–92

DOI

2
Alexander DD, Weed DL, Cushing CA, Lowe KA (2011) Metaanalysis of prospective studies of red meat consumption and colorectal cancer. Eur J Cancer Prev 20:293–307

DOI

3
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123

DOI

4
Bardou M, Barkun AN, Martel M (2013) Obesity and colorectal cancer. Gut 62:933–947

DOI

5
Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja M (2017) Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr 106:1005–1019

DOI

6
Bergman EN (1990) Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species. Physiol Rev 70:567–590

DOI

7
Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H (2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871

DOI

8
Bingham SA, Day NE, Luben R (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study (vol 361, pg 1496, 2003). Lancet 362:1000–1000

9
Bostick RM, Potter JD, Kushi LH, Sellers TA, Steinmetz KA, McKenzie DR, Gapstur SM, Folsom AR (1994) Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control 5:38–52

DOI

10
Bostick RM, Potter JD, Sellers TA, Mckenzie DR, Kushi LH, Folsom AR (1993) Relation of calcium, vitamin-D, and dairy food-intake to incidence of colon-cancer among older women—the Iowa womens health study. Am J Epidemiol 137:1302–1317

DOI

11
Brink M, Weijenberg MP, de Goeij AFPM, Schouten LJ, Koedijk FDH, Roemen GMJM, Lentjes MHFM, de Bruine AP, Goldbohm RA, van den Brandt PA (2004) Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 25:1619–1628

DOI

12
Bultman SJ (2014) Emerging roles of the microbiome in cancer. Carcinogenesis 35:249–255

DOI

13
Burkitt DP (1971) Epidemiology of cancer of the colon and rectum. Cancer 28:3–13

DOI

14
Burnett-Hartman AN, Newcomb PA, Mandelson MT, Adams SV, Wernli KJ, Shadman M, Wurscher MA, Makar KW (2011) Colorectal polyp type and the association with charred meat consumption, smoking, and microsomal epoxide hydrolase polymorphisms. Nutr Cancer 63:583–592

DOI

15
Burnouf DY, Miturski R, Nagao M, Nakagama H, Nothisen M, Wagner J, Fuchs RPP (2001) Early detection of 2-amino-1-methyl-6-phenylimidazo (4,5-b)pyridine(PhIP)-induced mutations within the Apc gene of rat colon. Carcinogenesis 22:329–335

DOI

16
Burns MB, Lynch J, Starr TK, Knights D, Blekhman R (2015) Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med 7

DOI

17
Butler LM, Wang R, Koh WP, Stern MC, Yuan JM, Yu MC (2009) Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: a prospective study. Int J Cancer 124:678–686

DOI

18
Butler LM, Wang R, Koh WP, Yu MC (2008) Prospective study of dietary patterns and colorectal cancer among Singapore Chinese. Br J Cancer 99:1511–1516

DOI

19
Carr PR, Walter V, Brenner H, Hoffmeister M (2016) Meat subtypes and their association with colorectal cancer: systematic review and meta-analysis. Int J Cancer 138:293–302

DOI

20
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306

DOI

21
Chan DSM, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE6

DOI

22
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132

DOI

23
Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, van den Brandt PA, Colditz GA, Folsom AR, Fraser GE, Freudenheim JL, Giovannucci E (2004) Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst 96:1015–1022

DOI

24
Chomchai C, Bhadrachari N, Nigro ND (1974) The effect of bile on the induction of experimental intestinal tumors in rats. Dis Colon Rectum 17:310–312

DOI

25
Chung L, Orberg ET, Geis AL, Chan JL, Fu K, Shields CED, Dejea CM, Fathi P, Chen J, Finard BB (2018) Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23:203–214

DOI

26
Chyou PH, Nomura AMY, Stemmermann GN (1996) A prospective study of colon and rectal cancer among Hawaii Japanese men. Ann Epidemiol 6:276–282

DOI

27
Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, Hollenbeck AR, Schatzkin A, Sinha R (2010) A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Can Res 70:2406–2414

DOI

28
Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrede JP (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107:11537–11542

DOI

29
Dahm CC (2011) Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries (vol 102, pg 614, 2010). J Natl Cancer Inst 103:1484–1484

30
Dahm CC, Keogh RH, Spencer EA, Greenwood DC, Key TJ, Fentiman IS, Shipley MJ, Brunner EJ, Cade JE, Burley VJ (2010) Dietary fiber and colorectal cancer risk: a nested casecontrol study using food diaries. J Natl Cancer Inst 102:614–626

DOI

31
David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, Alm EJ (2014a) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15:R89

DOI

32
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA(2014b) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

DOI

33
De Boever P, Wouters R, Verschaeve L, Berckmans P, Schoeters G, Verstraete W (2000) Protective effect of the bile salt hydrolaseactive Lactobacillus reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol 53:709–714

DOI

34
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P(2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

DOI

35
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiotagenerated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

DOI

36
DeSalvo KB (2016) Public health 3.0: applying the 2015-2020 dietary guidelines for Americans. Public Health Rep 131:518–521

DOI

37
Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308

DOI

38
Domingo JL, Nadal M (2016) Carcinogenicity of consumption of red and processed meat: What about environmental contaminants? Environ Res 145:109–115

DOI

39
Dong Y, Zhou J, Zhu Y, Luo L, He T, Hu H, Liu H, Zhang Y, Luo D, Xu S (2017) Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep 37

DOI

40
Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ, Moser AR, Newton MA, Jacoby RF (1997) Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res 57:812–814

41
Drasar BS, Irving D (1973) Environmental factors and cancer of the colon and breast. Br J Cancer 27:167–172

DOI

42
Egeberg R, Olsen A, Christensen J, Halkjaer J, Jakobsen MU, Overvad K, Tjonneland A (2013) Associations between red meat and risks for colon and rectal cancer depend on the type of red meat consumed. J Nutr 143:464–472

DOI

43
Esumi H, Ohgaki H, Kohzen E, Takayama S, Sugimura T (1989) Induction of lymphoma in Cdf1 mice by the food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Jpn J Cancer Res 80:1176–1178

DOI

44
Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL (2013) The long-term stability of the human gut microbiota. Science 341:1237439

DOI

45
Ferrucci LM, Sinha R, Graubard BI, Mayne ST, Ma XM, Schatzkin A, Schoenfeld PS, Cash BD, Flood A, Cross AJ (2009) Dietary meat intake in relation to colorectal adenoma in asymptomatic women. Am J Gastroenterol 104:1231–1240

DOI

46
Ferrucci LM, Sinha R, Huang WY, Berndt SI, Katki HA, Schoen RE, Hayes RB, Cross AJ (2012) Meat consumption and the risk of incident distal colon and rectal adenoma. Br J Cancer 106:608–616

DOI

47
Flood A, Velie EM, Sinha R, Chaterjee N, Lacey JV, Schairer C, Schatzkin A (2003) Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women. Am J Epidemiol 158:59–68

DOI

48
Fujita H, Nagano K, Ochiai M, Ushijima T, Sugimura T, Nagao M, Matsushima T (1999) Difference in target organs in carcinogenesis with a heterocyclic amine, 2-amino-3,4-dimethylimidazo[4,5-f]quinol in different strains of mice. Jpn J Cancer Res 90:1203–1206

DOI

49
Fung KY, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831

DOI

50
Gaard M, Tretli S, Loken EB (1996) Dietary factors and risk of colon cancer: a prospective study of 50,535 young Norwegian men and women. Eur J Cancer Prev 5:445–454

51
Gholizadeh P, Eslami H, Kafil HS (2017) Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother 89:918–925

DOI

52
Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC (1994) Intake of fat, meat, and fiber in relation to risk of colon-cancer in men. Can Res 54:2390–2397

53
Goldbohm RA, Vandenbrandt PA, Vantveer P, Brants HAM, Dorant E, Sturmans F, Hermus RJJ (1994) A prospective cohort study on the relation between meat consumption and the risk of coloncancer. Can Res 54:718–723

54
Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, Fan L, Li J, Chavarri-Guerra Y, Liedke PE, Pramesh CS, Badovinac-Crnjevic T, Sheikine Y (2014) Challenges to effective cancer control in China, India, and Russia. Lancet Oncol 15:489–538

DOI

55
Grivennikov SI, Wang KP, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254

DOI

56
Gunter MJ, Probst-Hensch NM, Cortessis VK, Kulldorff M, Haile RW, Sinha R (2005) Meat intake, cooking-related mutagens and risk of colorectal adenoma in a sigmoidoscopy-based case-control study. Carcinogenesis 26:637–642

DOI

57
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

DOI

58
Hansen L, Skeie G, Landberg R, Lund E, Palmqvist R, Johansson I, Dragsted LO, Egeberg R, Johnsen NF, Christensen J (2012) Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort. Int J Cancer 131:469–478

DOI

59
Heilbrun LK, Nomura A, Hankin JH, Stemmermann GN (1989) Diet and colorectal cancer with special reference to fiber intake. Int J Cancer 44:1–6

DOI

60
Higashimura Y, Naito Y, Takagi T, Uchiyama K, Mizushima K, Ushiroda C, Ohnogi H, Kudo Y, Yasui M, Inui S (2016) Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. Am J Physiol Gastrointest Liver Physiol 310:G367–375

DOI

61
Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458

DOI

62
Howe GR, Aronson KJ, Benito E, Castelleto R, Cornee J, Duffy S, Gallagher RP, Iscovich JM, DengAo J, Kaaks R (1997) The relationship between dietary fat intake and risk of colorectal cancer: evidence from the combined analysis of 13 case-control studies. Cancer Causes Control 8:215–228

DOI

63
Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, Kasper H, Scheppach W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67:136–142

DOI

64
Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, Sugimura T (1991) A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (phip). Carcinogenesis 12:1503–1506

DOI

65
Jarvinen R, Knekt P, Hakulinen T, Aromaa A (2001a) Prospective study on milk products, calcium and cancers of the colon and rectum. Eur J Clin Nutr 55:1000–1007

DOI

66
Jarvinen R, Knekt P, Hakulinen T, Rissanen H, Heliovaara M (2001b) Dietary fat, cholesterol and colorectal cancer in a prospective study. Br J Cancer 85:357–361

DOI

67
Kabat GC, Miller AB, Jain M, Rohan TE (2007) A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women (vol 97, pg 118, 2007). Br J Cancer 97:1600–1600

DOI

68
Kabat GC, Shikany JM, Beresford SA, Caan B, Neuhouser ML, Tinker LF, Rohan TE (2008) Dietary carbohydrate, glycemic index, and glycemic load in relation to colorectal cancer risk in the Women’s Health Initiative. Cancer Causes Control 19:1291–1298

DOI

69
Kampman E, Goldbohm RA, Vandenbrandt PA, Vantveer P (1994) Fermented dairy-products, calcium, and colorectal-cancer in the netherlands cohort study. Can Res 54:3186–3190

70
Kato I, Akhmedkhanov A, Koenig K, Toniolo PG, Shore RE, Riboli E (1997) Prospective study of diet and female colorectal cancer: the New York University Women’s Health Study. Nutr Cancer 28:276–281

DOI

71
Kato T, Migita H, Ohgaki H, Sato S, Takayama S, Sugimura T (1989) Induction of tumors in the zymbal gland, oral cavity, colon, skin and mammary-gland of F344 rats by a mutagenic compound, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline. Carcinogenesis 10:601–603

DOI

72
Kato T, Ohgaki H, Hasegawa H, Sato S, Takayama S, Sugimura T (1988) Carcinogenicity in rats of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Carcinogenesis 9:71–73

DOI

73
Kearney J, Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz GA, Wing A, Kampman E, Willett WC (1996) Calcium, vitamin D, anddairy foods and the occurrence of colon cancer in men. Am J Epidemiol 143:907–917

DOI

74
Kesse E, Boutron-Ruault MC, Norat T, Riboli E, Clavel-Chapelon F, Grp EN (2005) Dietary calcium, phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among French women of the E3N-EPIC prospective study. Int J Cancer 117:137–144

DOI

75
Kostic AD, Chun EY, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215

DOI

76
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298

DOI

77
Lanza E, Hartman TJ, Albert PS, Shields R, Slattery M, Caan B, Paskett E, Iber F, Kikendall JW, Lance P (2006) High dry bean intake and reduced risk of advanced colorectal adenoma recurrence among participants in the polyp prevention trial. J Nutr 136:1896–1903

DOI

78
Larsson SC, Rafter J, Holmberg L, Bergkvist L, Wolk A (2005) Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int J Cancer 113:829–834

DOI

79
Lee DH, Anderson KE, Harnack LJ, Folsom AR, Jacobs DR (2004) Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study. J Natl Cancer Inst 96:403–407

DOI

80
Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, Brim H, Ashktorab H, Ng SC, Ng SSM(2017) Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 23:2061–2070

DOI

81
Lin J, Zhang SM, Cook NR, Lee IM, Buring JE (2004) Dietary fat and fatty acids and risk of colorectal cancer in women. Am J Epidemiol 160:1011–1022

DOI

82
Lin J, Zhang SM, Cook NR, Manson JE, Lee IM, Buring JE (2005) Intakes of calcium and vitamin D and risk of colorectal cancer in women. Am J Epidemiol 161:755–764

DOI

83
Liu L, Zhuang W, Wang RQ, Mukherjee R, Xiao SM, Chen Z, Wu XT, Zhou Y, Zhang HY (2011) Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr 50:173–184

DOI

84
Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H (2013) Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS ONE 8:e53916

DOI

85
Mai V, Flood A, Peters U, Lacey JV Jr, Schairer C, Schatzkin A (2003) Dietary fibre and risk of colorectal cancer in the breast cancer detection demonstration project (BCDDP) follow-up cohort. Int J Epidemiol 32:234–239

DOI

86
Matsukura N, Kawachi T, Morino K, Ohgaki H, Sugimura T, Takayama S (1981) Carcinogenicity in mice of mutagenic compounds from a tryptophan pyrolyzate. Science 213:346–347

DOI

87
McCullough ML, Robertson AS, Chao A, Jacobs EJ, Stampfer MJ, Jacobs DR, Diver WR, Calle EE, Thun MJ (2003a) A prospective study of whole grains, fruits, vegetables and colon cancer risk. Cancer Causes Control 14:959–970

DOI

88
McCullough ML, Robertson AS, Rodriguez C, Jacobs EJ, Chao A, Jonas C, Calle EE, Willett WC, Thun MJ (2003b) Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States). Cancer Causes Control 14:1–12

DOI

89
Michels KB, Fuchs CS, Giovannucci E, Colditz GA, Hunter DJ, Stampfer MJ, Willett WC (2005) Fiber intake and incidence of colorectal cancer among 76,947 women and 47,279 men. Cancer Epidemiol Biomark Prev 14:842–849

DOI

90
Nagao M (1999) A new approach to risk estimation of food-borne carcinogens–heterocyclic amines–based on molecular information. Mutat Res 431:3–12

DOI

91
Nagao M, Ushijima T, Toyota M, Inoue R, Sugimura T (1997) Genetic changes induced by heterocyclic amines. Mutat Res Fundam Mol Mech Mutagen 376:161–167

DOI

92
Narisawa T, Magadia NE, Weisburger JH, Wynder EL (1974) Promoting effect of bile-acids on colon carcinogenesis after intrarectal instillation of N-methyl-N’-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst 53:1093–1097

DOI

93
Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80

DOI

94
Nomura AM, Hankin JH, Henderson BE, Wilkens LR, Murphy SP, Pike MC, Le Marchand L, Stram DO, Monroe KR, Kolonel LN (2007) Dietary fiber and colorectal cancer risk: the multiethnic cohort study. Cancer Causes Control 18:753–764

DOI

95
O’Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13:691–706

DOI

96
O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342

DOI

97
Oba S, Shimizu N, Nagata C, Shimizu H, Kametani M, Takeyama N, Ohnuma T, Matsushita S (2006) The relationship between the consumption of meat, fat, and coffee and the risk of colon cancer: a prospective study in Japan. Cancer Lett 244:260–267

DOI

98
Ochiai M, Imai H, Sugimura T, Nagao M, Nakagama H(2002) Induction of intestinal tumors and lymphomas in C57BL/6N mice by a food-borne carcinogen, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Jpn J Cancer Res 93:478–483

DOI

99
Ohgaki H, Hasegawa H, Suenaga M, Kato T, Sato S, Takayama S, Sugimura T (1986) Induction of hepatocellular-carcinoma and highly metastatic squamous-cell carcinomas in the forestomach of mice by feeding 2-amino-3,4-dimethylimidazo[4,5-f]quinoline. Carcinogenesis 7:1889–1893

DOI

100
Ohgaki H, Hasegawa H, Suenaga M, Sato S, Takayama S, Sugimura T (1987) Carcinogenicity in mice of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (meiqx) from cooked foods. Carcinogenesis 8:665–668

DOI

101
Ohgaki H, Kusama K, Matsukura N, Morino K, Hasegawa H, Sato S, Takayama S, Sugimura T (1984a) Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo[4,5-f]quinoline, from broiled sardine, cooked beef and beef extract. Carcinogenesis 5:921–924

DOI

102
Ohgaki H, Matsukura N, Morino K, Kawachi T, Sugimura T, Takayama S (1984b) Carcinogenicity in mice of mutagenic compounds from glutamic-acid and soybean globulin pyrolysates. Carcinogenesis 5:815–819

DOI

103
Okochi E, Watanabe N, Shimada Y, Takahashi S, Wakazono K, Shirai T, Sugimura T, Nagao M, Ushijima T (1999) Preferential induction of guanine deletion at 5 ‘-GGGA-3 ‘ in rat mammary glands by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 20:1933–1938

DOI

104
Okonogi H, Ushijima T, Zhang XB, Heddle JA, Suzuki T, Sofuni T, Felton JS, Tucker JD, Sugimura T, Nagao M (1997) Agreement of mutational characteristics of heterocyclic amines in lacI of the Big Blue(R) mouse with those in tumor related genes in rodents. Carcinogenesis 18:745–748

DOI

105
Otani T, Iwasaki M, Ishihara J, Sasazuki S, Inoue M, Tsugane S, Japan Public Health Center-Based Prospective Study G (2006) Dietary fiber intake and subsequent risk of colorectal cancer: the Japan Public Health Center-based prospective study. Int J Cancer 119:1475–1480

DOI

106
Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, Gaskins HR, O’Keefe SJ (2013) Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 98:111–120

DOI

107
Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472

DOI

108
Phillips DH, Grover PL (1994) Polycyclic-hydrocarbon activation –bay regions and beyond. Drug Metab Rev 26:443–467

DOI

109
Pietinen P, Malila N, Virtanen M, Hartman TJ, Tangrea JA, Albanes D, Virtamo J (1999) Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control 10:387–396

DOI

110
Ralston RA, Truby H, Palermo CE, Walker KZ (2014) Colorectal cancer and nonfermented milk, solid cheese, and fermented milk consumption: a systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr 54:1167–1179

DOI

111
Rijnkels JM, Hollanders VM, Woutersen RA, Koeman JH, Alink GM (1997) Interaction of dietary fat and of a vegetables/fruit mixture on 1,2-dimethylhydrazine-or N-methyl-N’-nitro-N-nitrosoguanidine-induced colorectal cancer in rats. Cancer Lett 114:297–298

DOI

112
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215

DOI

113
Rubinstein MR, Wang XW, Liu WD, Hao YJ, Cai GF, Han YPW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA Adhesin. Cell Host Microbe 14:195–206

DOI

114
Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, Randall TA, Galanko J, Benson A, Sandler RS (2012) Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 6:1858–1868

DOI

115
Sanjoaquin MA, Appleby PN, Thorogood M, Mann JI, Key TJ (2004) Nutrition, lifestyle and colorectal cancer incidence: a prospective investigation of 10 998 vegetarians and non-vegetarians in the United Kingdom. Br J Cancer 90:118–121

DOI

116
Schatzkin A, Mouw T, Park Y, Subar AF, Kipnis V, Hollenbeck A, Leitzmann MF, Thompson FE (2007) Dietary fiber and wholegrain consumption in relation to colorectal cancer in the NIHAARP Diet and Health Study. Am J Clin Nutr 85:1353–1360

DOI

117
Sears CL (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22:349–369

DOI

118
Shin A, Li H, Shu XO, Yang G, Gao YT, Zheng W (2006) Dietary intake of calcium, fiber and other micronutrients in relation to colorectal cancer risk: results from the Shanghai Women’s Health Study. Int J Cancer 119:2938–2942

DOI

119
Shin A, Shrubsole MJ, Ness RM, Wu HY, Sinha R, Smalley WE, Shyr Y, Zheng W (2007) Meat and meat-mutagen intake, doneness preference and the risk of colorectal polyps: the Tennessee Colorectal Polyp Study. Int J Cancer 121:136–142

DOI

120
Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakuchi M, Hasegawa R, Imaida K, Matsumoto K, Wakabayashi K (1997) The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res 57:195–198

121
Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, Dambacher CM, Capek P, Kukreja M, Kozlov IA (2013) Substrate cleavage profiling suggests a distinct function of bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammationcancer interface. J Biol Chem 288:34956–34967

DOI

122
Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

DOI

123
Silvester KR, Cummings JH (1995) Does digestibility of meat protein help explain large-bowel cancer risk. Nutr Cancer 24:279–288

DOI

124
Sinha R, Cross A, Curtin J, Zimmerman T, McNutt S, Risch A, Holden J (2005a) Development of a food frequency questionnaire module and databases for compounds in cooked and processed meats. Mol Nutr Food Res 49:648–655

DOI

125
Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB, Team LOCP (2005b) Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Can Res 65:8034–8041

DOI

126
Slavin JL (2008) Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc 108:1716–1731

DOI

127
Sokol SY (1999) Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet Dev 9:405–410

DOI

128
Song M, Nishihara R, Wu KN, Qian ZR, Kim SA, Sukawa Y, Mima K, Inamura K, Masuda A, Yang JH (2015) Prospective study of marine omega-3 polyunsaturated fatty acids and risk of colorectal cancer according to microsatellite instability. Cancer Res 75

129
Song MY, Nishihara R, Cao Y, Chun E, Qian ZR, Mima K, Inamura K, Masugi Y, Nowak J, Nosho K (2016) Marine omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer according to tumor-infiltrating T cells. Cancer Res 76

130
Song MY, Zhang XH, Meyerhardt JA, Giovannucci EL, Ogino SJ, Fuchs CS, Chan AT (2017) Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 66:1790–1796

DOI

131
Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD (1994) Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol 139:1–15

DOI

132
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1:192–198

DOI

133
Stemmermann GN, Nomura AM, Heilbrun LK (1984) Dietary fat and the risk of colorectal cancer. Cancer Res 44:4633–4637

134
Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95:290–299

DOI

135
Tabatabaei SM, Heyworth JS, Knuiman MW, Fritschi L (2010) Dietary benzo[a]pyrene intake from meat and the risk of colorectal cancer. Cancer Epidemiol Biomark Prev 19:3182–3184

DOI

136
Taira T, Yamaguchi S, Takahashi A, Okazaki Y, Yamaguchi A, Sakaguchi H, Chiji H (2015) Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J Clin Biochem Nutr 57:212–216

DOI

137
Takayama S, Masuda M, Mogami M, Ohgaki H, Sato S, Sugimura T (1984a) Induction of cancers in the intestine, liver and various other organs of rats by feeding mutagens from glutamic-acid pyrolysate. Gann 75:207–213

138
Takayama S, Nakatsuru Y, Masuda M, Ohgaki H, Sato S, Sugimura T (1984b) Demonstration of carcinogenicity in f344 rats of 2-amino-3-methylimidazo[4,5-f]quinoline from broiled sardine, fried beef and beef extract. Gann 75:467–470

139
Takayama S, Nakatsuru Y, Ohgaki H, Sato S, Sugimura T (1985a) Atrophy of salivary-glands and pancreas of rats fed on diet with amino-methyl-alpha-carboline. Proc Jpn Acad Ser B 61:277–280

DOI

140
Takayama S, Nakatsuru Y, Ohgaki H, Sato S, Sugimura T (1985b) Carcinogenicity in rats of a mutagenic compound, 3-amino-1,4-dimethyl-5h-pyrido[4,3-b]indole, from tryptophan pyrolysate. Jpn J Cancer Res 76:815–817

141
Tamano S, Hasegawa R, Hagiwara A, Nagao M, Sugimura T, Ito N (1994) Carcinogenicity of a mutagenic compound from food, 2-amino-3-methyl-9h-pyrido[2,3-b]indole (mea-alpha-c), in male f344 rats. Carcinogenesis 15:2009–2015

DOI

142
Terry P, Baron JA, Bergkvist L, Holmberg L, Wolk A (2002) Dietary calcium and vitamin D intake and risk of colorectal cancer: a prospective cohort study in women. Nutr Cancer 43:39–46

DOI

143
Terry P, Bergkvist L, Holmberg L, Wolk A (2001) No association between fat and fatty acids intake and risk of colorectal cancer. Cancer Epidemiol Biomark Prev 10:913–914

144
Toden S, Bird AR, Topping DL, Conlon MA (2006) Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol Ther 5:267–272

DOI

145
Toden S, Bird AR, Topping DL, Conlon MA (2007) Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. Br J Nutr 97:535–543

DOI

146
Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12:782–786

DOI

147
Tsoi H, Chu ESH, Zhang X, Sheng JQ, Nakatsu G, Ng SC, Chan AWH, Chan FKL, Sung JJY, Yu J (2017) Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152:1419–1433

DOI

148
Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

DOI

149
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14.

DOI

150
Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 4: e6026

DOI

151
Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, Dorrestein PC, Turnbaugh PJ, Knight R (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470–1476

DOI

152
Varghese C, Shin HR (2014) Strengthening cancer control in China. Lancet Oncol 15:484–485

DOI

153
Weijenberg MP, Luchtenborg M, de Goeij AF, Brink M, van Muijen GN, de Bruine AP, Goldbohm RA, van den Brandt PA (2007) Dietary fat and risk of colon and rectal cancer with aberrant MLH1 expression, APC or KRAS genes. Cancer Causes Control 18:865–879

DOI

154
Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE (1990) Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective-study among women. N Engl J Med 323:1664–1672

DOI

155
Windey K, De Preter V, Verbeke K (2012) Relevance of protein fermentation to gut health. Mol Nutr Food Res 56:184–196

DOI

156
Winter J, Nyskohus L, Young GP, Hu Y, Conlon MA, Bird AR, Topping DL, Le Leu RK (2011) Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res (Phila) 4:1920–1928

DOI

157
Wu SG, Rhee KJ, Albesiano E, Rabizadeh S, Wu XQ, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–U1064

DOI

158
Wu SJ, Feng B, Li K, Zhu X, Liang SH, Liu XF, Han S, Wang BL, Wu KC, Miao DM (2012) Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis. Am J Med 125(551):559

DOI

159
Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113:11

DOI

160
Yu XF, Zou J, Dong J (2014) Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol 20:15398–15412

DOI

161
Zhang XH, Giovannucci EL, Smith-Warner SA, Wu K, Fuchs CS, Pollak M, Willett WC, Ma J (2011) A prospective study of intakes of zinc and heme iron and colorectal cancer risk in men and women. Cancer Causes Control 22:1627–1637

DOI

162
Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, Rusch K, Klosterhalfen S, Enck P (2012) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66:53–60

DOI

Outlines

/