REVIEW

Gut microbiota derived metabolites in cardiovascular health and disease

  • Zeneng Wang ,
  • Yongzhong Zhao
Expand
  • Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

Received date: 16 Mar 2018

Accepted date: 16 Apr 2018

Published date: 08 Jun 2018

Copyright

2018 The Author(s) 2018

Abstract

Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.

Cite this article

Zeneng Wang , Yongzhong Zhao . Gut microbiota derived metabolites in cardiovascular health and disease[J]. Protein & Cell, 2018 , 9(5) : 416 -431 . DOI: 10.1007/s13238-018-0549-0

1
Abrams SA (2007) An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J Nutr 137:2208–2212

DOI

2
Ahmed K, Tunaru S, Offermanns S (2009) GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol Sci 30:557–562. https://doi.org/10.1016/j.tips.2009.09.001

DOI

3
An D (2017) JNK1 mediates lipopolysaccharide-induced CD14 and SR-AI expression and macrophage foam cell formation. Front Physiol 8:1075. https://doi.org/10.3389/fphys.2017.01075

DOI

4
Andreesen JR (1994) Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek 66:223–237

DOI

5
Anhe FF (2015) Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep 4:389–400. https://doi.org/10.1007/s13679-015-0172-9

DOI

6
Aoki K (2015) Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction. J Am Heart Assoc 4: e002023. https://doi.org/10.1161/JAHA.115.002023

DOI

7
Arbabi E, Hamidi G, Talaei SA, Salami M (2016) Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran J Basic Med Sci 19:1285–1290. https://doi.org/10.22038/ijbms.2016.7911

8
Aura AM (2005) In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr 44:133–142. https://doi.org/10.1007/s00394-004-0502-2

DOI

9
Axelson M, Setchell KD (1981) The excretion of lignans in rats—evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett 123:337–342

DOI

10
Bakken JS, Polgreen PM, Beekmann SE, Riedo FX, Streit JA (2013) Treatment approaches including fecal microbiota transplantation for recurrent Clostridium difficile infection (RCDI) among infectious disease physicians. Anaerobe 24:20–24. https://doi.org/10.1016/j.anaerobe.2013.08.007

DOI

11
Barnard DL, Heaton KW (1973) Bile acids and vitamin A absorption in man: the effects of two bile acid-binding agents, cholestyramine and lignin. Gut 14:316–318

DOI

12
Battson ML (2017) Suppression of gut dysbiosis reverses western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. https://doi.org/10.1152/ajpendo.00187.2017

DOI

13
Bennett BJ (2013) Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60. https://doi.org/10.1016/j.cmet.2012.12.011

DOI

14
Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176. https://doi.org/10.1038/nri1004

DOI

15
Bhattarai Y, Kashyap PC (2016) Germ-free mice model for studying host–microbial interactions. Methods Mol Biol 1438:123–135.https://doi.org/10.1007/978-1-4939-3661-8_8

DOI

16
Bodea S, Funk MA, Balskus EP, Drennan CL (2016) Molecular basis of C–N bond cleavage by the glycyl radical enzyme choline trimethylamine-lyase. Cell Chem Biol 23:1206–1216. https://doi.org/10.1016/j.chembiol.2016.07.020

DOI

17
Boets E (2015) Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7:8916–8929. https://doi.org/10.3390/nu7115440

DOI

18
Boini KM, Hussain T, Li PL, Koka S (2017) Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem 44:152–162. https://doi.org/10.1159/000484623

DOI

19
Braune A, Blaut M (2018) Evaluation of inter-individual differences in gut bacterial isoflavone bioactivation in humans by PCR-based targeting of genes involved in equol formation. J Appl Microbiol 124:220–231. https://doi.org/10.1111/jam.13616

DOI

20
Chen JS, Faller DV, Spanjaard RA (2003) Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Curr Cancer Drug Targ 3:219–236

DOI

21
Chen ML (2016) Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 7:e02210–e02215. https://doi.org/10.1128/mBio.02210-15

DOI

22
Chen ML (2017) Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.006347

DOI

23
Cherdshewasart W, Panriansaen R, Picha P (2007) Pretreatment with phytoestrogen-rich plant decreases breast tumor incidence and exhibits lower profile of mammary ERalpha and ERbeta. Maturitas 58:174–181. https://doi.org/10.1016/j.maturitas.2007.08.001

DOI

24
Cherrington CA, Hinton M, Pearson GR, Chopra I (1991) Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J Appl Bacteriol 70:161–165

DOI

25
Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966. https://doi.org/10.1194/jlr.R900010-JLR200

DOI

26
Chiechi LM, Lobascio A, Grillo A, Valerio T (1999) Phytoestrogencontaining food and prevention of postmenopausal osteoporosis and cardiovascular diseases. Minerva Ginecol 51:343–348

27
Corsini E (2010) Enterodiol and enterolactone modulate the immune response by acting on nuclear factor-kappaB (NFkappaB) signaling. J Agric Food Chem 58:6678–6684. https://doi.org/10.1021/jf100471n

DOI

28
Craciun S, Marks JA, Balskus EP (2014) Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem Biol 9:1408–1413. https://doi.org/10.1021/cb500113p

DOI

29
Danielsson H (1963) Influence of bile acids on digestion and absorption of lipids. Am J Clin Nutr 12:214–219

DOI

30
Dawson PA, Karpen SJ (2015) Intestinal transport and metabolism of bile acids. J Lipid Res 56:1085–1099. https://doi.org/10.1194/jlr.R054114

DOI

31
de Punder K, Pruimboom L (2015) Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol 6:223. https://doi.org/10.3389/fimmu.2015.00223

DOI

32
DeAngelis KM (2011) Characterization of trapped lignindegrading microbes in tropical forest soil. PLoS ONE 6:e19306. https://doi.org/10.1371/journal.pone.0019306

DOI

33
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22:1137–1150. https://doi.org/10.1097/MIB.0000000000000750

DOI

34
Delgado S, Leite AM, Ruas-Madiedo P, Mayo B (2014) Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00766

DOI

35
den Besten G (2014) The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome. PLoS ONE 9:e107392. https://doi.org/10.1371/journal.pone.0107392

DOI

36
den Besten G (2015) Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor gamma and glucagon-like peptide-1. PLoS ONE 10:e0136364. https://doi.org/10.1371/journal.pone.0136364

DOI

37
Devlin AS (2016) Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 20:709–715. https://doi.org/10.1016/j.chom.2016.10.021

DOI

38
Dolphin CT, Riley JH, Smith RL, Shephard EA, Phillips IR (1997) Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA. Genomics 46:260–267. https://doi.org/10.1006/geno.1997.5031

DOI

39
Duboc H, Tache Y, Hofmann AF (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 46:302–312. https://doi.org/10.1016/j.dld.2013.10.021

DOI

40
Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122. https://doi.org/10.1111/j.1462-2920.2009.01931.x

DOI

41
Fan P (2015) Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr Protein Pept Sci 16:646–654

DOI

42
Fiorucci S, Cipriani S, Baldelli F, Mencarelli A (2010) Bile acidactivated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res 49:171–185. https://doi.org/10.1016/j.plipres.2009.11.001

DOI

43
Fitzpatrick LA (1999) Selective estrogen receptor modulators and phytoestrogens: new therapies for the postmenopausal women. Mayo Clin Proc 74:601–607

DOI

44
Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74:13–22. https://doi.org/10.1017/S0029665114001463

DOI

45
Frankenfeld CL, Atkinson C, Wahala K, Lampe JW (2014) Obesity prevalence in relation to gut microbial environments capable of producing equol or O-desmethylangolensin from the isoflavone daidzein. Eur J Clin Nutr 68:526–530. https://doi.org/10.1038/ejcn.2014.23

DOI

46
Fukui H, Brauner B, Bode JC, Bode C (1991) Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J Hepatol 12:162–169

DOI

47
Funk JL, Feingold KR, Moser AH, Grunfeld C (1993) Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98:67–82

DOI

48
Gaiz AA, Mosawy S, Colson N, Singh I (2018) Potential of anthocyanin to prevent cardiovascular disease in diabetes. Altern Ther Health Med

49
Gaya P, Medina M, Sanchez-Jimenez A, Landete JM (2016) Phytoestrogen metabolism by adult human gut microbiota. Molecules. https://doi.org/10.3390/molecules21081034

DOI

50
Glassock RJ (2008) Uremic toxins: what are they? An integrated overview of pathobiology and classification. J Ren Nutr 18:2–6. https://doi.org/10.1053/j.jrn.2007.10.003

DOI

51
Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012) Human genome sequencing in health and disease. Annu Rev Med 63:35–61. https://doi.org/10.1146/annurev-med-051010-162644

DOI

52
Goodman MT (2009) Urinary phytoestrogen excretion and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Prev Res (Phila) 2:887–894. https://doi.org/10.1158/1940-6207.CAPR-09-0039

DOI

53
Gregory JC (2015) Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 290:5647–5660. https://doi.org/10.1074/jbc.M114.618249

DOI

54
Gryp T, Vanholder R, Vaneechoutte M, Glorieux G (2017) p-Cresyl sulfate. Toxins (Basel). https://doi.org/10.3390/toxins9020052

DOI

55
Guadamuro L, Dohrmann AB, Tebbe CC, Mayo B, Delgado S (2017) Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones. BMC Microbiol 17:93. https://doi.org/10.1186/s12866-017-1001-y

DOI

56
Hamilton MK (2017) Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. Am J Physiol Gastrointest Liver Physiol 312:G474–G487. https://doi.org/10.1152/ajpgi.00427.2016

DOI

57
Han H (2015) p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J Am Heart Assoc 4:e001852. https://doi.org/10.1161/JAHA.115.001852

DOI

58
Hannum SM (2004) Potential impact of strawberries on human health: a review of the science. Crit Rev Food Sci Nutr 44:1–17. https://doi.org/10.1080/10408690490263756

DOI

59
Harrold JA (2013) Acute effects of a herb extract formulation and inulin fibre on appetite, energy intake and food choice. Appetite 62:84–90. https://doi.org/10.1016/j.appet.2012.11.018

DOI

60
Hashemi Z, Fouhse J, Im HS, Chan CB, Willing BP (2017) Dietary pea fiber supplementation improves glycemia and induces changes in the composition of gut microbiota, serum short-chain fatty acid profile and expression of mucins in glucose intolerant rats. Nutrient. https://doi.org/10.3390/nu9111236

DOI

61
Hassellund SS (2013) Effects of anthocyanins on cardiovascular risk factors and inflammation in pre-hypertensive men: a double-blind randomized placebo-controlled crossover study. J Hum Hypertens 27:100–106. https://doi.org/10.1038/jhh.2012.4

DOI

62
Heerdt BG, Houston MA, Augenlicht LH (1997) Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ 8:523–532

63
Herrington D (2000) Role of estrogens, selective estrogen receptor modulators and phytoestrogens in cardiovascular protection. Can J Cardiol 16(Suppl E):5E–9E

64
Hibberd MC (2017) The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aal4069

DOI

65
Hidalgo M (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60:3882–3890. https://doi.org/10.1021/jf3002153

DOI

66
Hollander D, Rim E, Ruble PE Jr (1977) Vitamin K2 colonic and ileal in vivo absorption: bile, fatty acids, and pH effects on transport. Am J Physiol 233:E124–E129. https://doi.org/10.1152/ajpendo.1977.233.2.E124

DOI

67
Hoverstad T, Midtvedt T (1986) Short-chain fatty acids in germfree mice and rats. J Nutr 116:1772–1776

DOI

68
Hoverstad T, Midtvedt T, Bohmer T (1985) Short-chain fatty acids in intestinal content of germfree mice monocontaminated with Escherichia coli or Clostridium difficile. Scand J Gastroenterol 20:373–380

DOI

69
Hsu CC (2013) Levels of indoxyl sulfate are associated with severity of coronary atherosclerosis. Clin Invest Med 36:E42–E49

DOI

70
Hu S (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE 6:e16221. https://doi.org/10.1371/journal.pone.0016221

DOI

71
Hughes CL Jr (1988) Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens. Environ Health Perspect 78:171–174

DOI

72
Hung SC, Kuo KL, Wu CC, Tarng DC (2017) Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. https://doi.org/10.1161/jaha.116.005022

DOI

73
Isaak CK, Petkau JC, Blewett H, Karmin O, Siow YL (2017) Lingonberry anthocyanins protect cardiac cells from oxidativestress-induced apoptosis. Can J Physiol Pharmacol 95:904–910. https://doi.org/10.1139/cjpp-2016-0667

DOI

74
Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T (2013) Correlation between serum levels of protein-bound uremic toxins in hemodialysis patients measured by LC/MS/MS. Mass Spectrom (Tokyo) 2:S0017. https://doi.org/10.5702/massspectrometry.s0017

DOI

75
Jing YJ (2016) p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE-/-mice. Kidney Int 89:439–449. https://doi.org/10.1038/ki.2015.287

DOI

76
Joyce SA, Gahan CG (2016) Bile acid modifications at the microbehost interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol 7:313–333. https://doi.org/10.1146/annurev-food-041715-033159

DOI

77
Kalnins G (2015) Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. J Biol Chem 290:21732–21740. https://doi.org/10.1074/jbc.M115.670471

DOI

78
Kang N (2015) Gallic acid isolated from Spirogyra sp. Improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol 39:764–772. https://doi.org/10.1016/j.etap.2015.02.006

DOI

79
Karaki S (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 39:135–142. https://doi.org/10.1007/s10735-007-9145-y

DOI

80
Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7:2839–2849. https://doi.org/10.3390/nu7042839

DOI

81
Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27:703–714

DOI

82
Koeth RA (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145

DOI

83
Koeth RA (2014) Gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 20:799–812. https://doi.org/10.1016/j.cmet.2014.10.006

DOI

84
Kouchaki E (2017) Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin Nutr 36:1245–1249. https://doi.org/10.1016/j.clnu.2016.08.015

DOI

85
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

DOI

86
Kummen M (2017) Elevated trimethylamine-N-oxide (TMAO) is associated with poor prognosis in primary sclerosing cholangitis patients with normal liver function. United Eur Gastroenterol J 5:532–541. https://doi.org/10.1177/2050640616663453

DOI

87
Lakio L (2006) Pro-atherogenic properties of lipopolysaccharide from the periodontal pathogen Actinobacillus actinomycetemcomitans. J Endotoxin Res 12:57–64. https://doi.org/10.1179/096805106X89099

DOI

88
LaRusso NF, Korman MG, Hoffman NE, Hofmann AF (1974) Dynamics of the enterohepatic circulation of bile acids. Postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption. N Engl J Med 291:689–692. https://doi.org/10.1056/NEJM197410032911401

DOI

89
Lephart ED, Adlercreutz H, Lund TD (2001) Dietary soy phytoestrogen effects on brain structure and aromatase in Long-Evans rats. NeuroReport 12:3451–3455

DOI

90
Lepper PM (2011) Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease–results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC). Atherosclerosis 219:291–297. https://doi.org/10.1016/j.atherosclerosis.2011.06.001

DOI

91
Levi M (2016) Role of bile acid-regulated nuclear receptor FXR and G protein-coupled receptor TGR5 in regulation of cardiorenal syndrome (Cardiovascular Disease and Chronic Kidney Disease). Hypertension 67:1080–1084. https://doi.org/10.1161/HYPERTENSIONAHA.115.06417

DOI

92
Li J (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841. https://doi.org/10.1038/nbt.2942

DOI

93
Liber A, Szajewska H (2013) Effects of inulin-type fructans on appetite, energy intake, and body weight in children and adults: systematic review of randomized controlled trials. Ann Nutr Metab 63:42–54. https://doi.org/10.1159/000350312

DOI

94
Lin CJ (2014) p-Cresyl sulfate is a valuable predictor of clinical outcomes in pre-ESRD patients. Biomed Res Int 2014:526932. https://doi.org/10.1155/2014/526932

DOI

95
Louis P (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106

DOI

96
Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x

DOI

97
Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. https://doi.org/10.1038/nrmicro3344

DOI

98
Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151. https://doi.org/10.1016/j.cyto.2008.01.006

DOI

99
MacIver DH, McNally PG, Ollerenshaw JD, Sheldon TA, Heagerty AM (1990) The effect of short-chain fatty acid supplementation on membrane electrolyte transport and blood pressure. J Hum Hypertens 4:485–490

100
Manrique Vergara D, Gonzalez Sanchez ME (2017) Short chain fatty acids (butyric acid) and intestinal diseases. Nutr Hosp 34:58–61. https://doi.org/10.20960/nh.1573

DOI

101
Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. https://doi.org/10.1146/annurev.genom.9.081307.164359

DOI

102
Martinez-del Campo A (2015) Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. MBio. https://doi.org/10.1128/mbio.00042-15

DOI

103
Matthies A, Loh G, Blaut M, Braune A (2012) Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 142:40–46. https://doi.org/10.3945/jn.111.148247

DOI

104
Mayerhofer CCK (2017) Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail 23:666–671. https://doi.org/10.1016/j.cardfail.2017.06.007

DOI

105
Mendelson MM (2017) Association of Body Mass Index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. PLoS Med 14:e1002215. https://doi.org/10.1371/journal.pmed.1002215

DOI

106
Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE (2015) Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS ONE 10: e0117223. https://doi.org/10.1371/journal.pone.0117223

DOI

107
Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81:949–954. https://doi.org/10.1038/ki.2011.504

DOI

108
Miettinen TA (1971) Relationship between faecal bile acids, absorption of fat and vitamin B 12, and serum lipids in patients with ileal resections. Eur J Clin Invest 1:452–460

DOI

109
Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62:1589–1592

110
Mills EL (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556:113–117. https://doi.org/10.1038/nature25986

DOI

111
Miyamoto J (2016) The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens 25:379–383. https://doi.org/10.1097/MNH.0000000000000246

DOI

112
Morito K (2001) Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol Pharm Bull 24:351–356

DOI

113
Moss JW, Ramji DP (2016) Nutraceutical therapies for atherosclerosis. Nat Rev Cardiol 13:513–532. https://doi.org/10.1038/nrcardio.2016.103

DOI

114
Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D (2017) Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 179:24–37. https://doi.org/10.1016/j.trsl.2016.04.007

DOI

115
Natarajan N (2016) Microbial short-chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 48:826–834. https://doi.org/10.1152/physiolgenomics.00089.2016

DOI

116
Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303:1047–1052

DOI

117
Oellgaard J, Winther SA, Hansen TS, Rossing P, von Scholten BJ (2017) Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer. Curr Pharm Des 23:3699–3712. https://doi.org/10.2174/1381612823666170622095324

118
Paasche S (2013) Fecal microbiota transplantation: an innovative approach to treating Clostridium difficile disease. JAAPA 26:46–49

DOI

119
Panigrahi P (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548:407–412. https://doi.org/10.1038/nature23480

DOI

120
Pascal MC, Burini JF, Chippaux M (1984) Regulation of the trimethylamine N-oxide (TMAO) reductase in Escherichia coli: analysis of tor: Mud1 operon fusion. Mol Gen Genet 195:351–355

DOI

121
Pereira-Fantini PM (2017) Unravelling the metabolic impact of SBS-associated microbial dysbiosis: insights from the piglet short bowel syndrome model. Sci Rep 7:43326. https://doi.org/10.1038/srep43326

DOI

122
Peterson J (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68:571–603. https://doi.org/10.1111/j.1753-4887.2010.00319.x

DOI

123
Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202–207. https://doi.org/10.4161/gmic.27492

DOI

124
Pluznick JL (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415. https://doi.org/10.1073/pnas.1215927110

DOI

125
Porez G, Prawitt J, Gross B, Staels B (2012) Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 53:1723–1737. https://doi.org/10.1194/jlr.R024794

DOI

126
Prohaszka L, Jayarao BM, Fabian A, Kovacs S (1990) The role of intestinal volatile fatty acids in the Salmonella shedding of pigs. Zentralbl Vet B 37:570–574

DOI

127
Qin J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

DOI

128
Radtke OA, Kiderlen AF, Kayser O, Kolodziej H (2004) Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid. Planta Med 70:924–928. https://doi.org/10.1055/s-2004-832618

DOI

129
Raspor P, Goranovic D(2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28:101–124. https://doi.org/10.1080/07388550802046749

DOI

130
Rath S, Heidrich B, Pieper DH, Vital M (2017) Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 5:54. https://doi.org/10.1186/s40168-017-0271-9

DOI

131
Rausch C, Lerchner A, Schiefner A, Skerra A (2013) Crystal structure of the omega-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential. Proteins 81:774–787. https://doi.org/10.1002/prot.24233

DOI

132
Reger MK, Zollinger TW, Liu Z, Jones J, Zhang J (2017) Association between urinary phytoestrogens and C-reactive protein in the continuous national health and nutrition examination survey. J Am Coll Nutr 36:434–441. https://doi.org/10.1080/07315724.2017.1318722

DOI

133
Reichardt N (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335. https://doi.org/10.1038/ismej.2014.14

DOI

134
Rothschild D (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215. https://doi.org/10.1038/nature25973

DOI

135
Schuett K (2017) Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 70:3202–3204. https://doi.org/10.1016/j.jacc.2017.10.064

DOI

136
Schuijt TJ (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65:575–583. https://doi.org/10.1136/gutjnl-2015-309728

DOI

137
Schumann RR (1990) Structure and function of lipopolysaccharide binding protein. Science 249:1429–1431

DOI

138
Seldin MM (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc. https://doi.org/10.1161/jaha.115.002767

DOI

139
Shan Z (2017) Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr 106:888–894. https://doi.org/10.3945/ajcn.117.157107

DOI

140
Shi J (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

DOI

141
Shih DM (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56:22–37. https://doi.org/10.1194/jlr.M051680

DOI

142
Stoclet JC, Kleschyov A, Andriambeloson E, Diebolt M, Andriantsitohaina R (1999) Endothelial no release caused by red wine polyphenols. J Physiol Pharmacol 50:535–540

143
Sun X (2016) Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem Biophys Res Commun 481:63–70. https://doi.org/10.1016/j.bbrc.2016.11.017

DOI

144
Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL (2016) Trimethylamine N-oxide and prognosis in acute heart failure. Heart 102:841–848. https://doi.org/10.1136/heartjnl-2015-308826

DOI

145
Suzuki T, Heaney LM, Jones DJ, Ng LL (2017) Trimethylamine Noxide and risk stratification after acute myocardial infarction. Clin Chem 63:420–428. https://doi.org/10.1373/clinchem.2016.264853

DOI

146
Tang WH (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. https://doi.org/10.1056/NEJMoa1109400

DOI

147
Tang WH (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–455. https://doi.org/10.1161/CIRCRESAHA.116.305360

DOI

148
Tazoe H (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30:149–156

DOI

149
Tolhurst G (2012) Short-chain fatty acids stimulate glucagonlike peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371. https://doi.org/10.2337/db11-1019

DOI

150
Trieu VN, Uckun FM (1999) Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem Biophys Res Commun 258:685–688. https://doi.org/10.1006/bbrc.1999.0577

DOI

151
Troseid M (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726. https://doi.org/10.1111/joim.12328

DOI

152
Tsuda T (2012) Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56:159–170. https://doi.org/10.1002/mnfr.201100526

DOI

153
Tumur Z, Niwa T (2009) Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am J Nephrol 29:551–557. https://doi.org/10.1159/000191468

DOI

154
Tumur Z, Shimizu H, Enomoto A, Miyazaki H, Niwa T (2010) Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am J Nephrol 31:435–441. https://doi.org/10.1159/000299798

DOI

155
Turnbaugh PJ (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

DOI

156
Ulman CA, Trevino JJ, Miller M, Gandhi RK (2014) Fish odor syndrome: a case report of trimethylaminuria. Dermatol Online J 20:21260

157
Vamanu E, Pelinescu D, Sarbu I (2016) Comparative fingerprinting of the human microbiota in diabetes and cardiovascular disease. J Med Food 19:1188–1195. https://doi.org/10.1089/jmf.2016.0085

DOI

158
van der Schouw YT (2005) Prospective study on usual dietary phytoestrogen intake and cardiovascular disease risk in Western women. Circulation 111:465–471. https://doi.org/10.1161/01.CIR.0000153814.87631.B0

DOI

159
Vanharanta M (2002) Association between low serum enterolactone and increased plasma F2-isoprostanes, a measure of lipid peroxidation. Atherosclerosis 160:465–469

DOI

160
Vanharanta M, Voutilainen S, Rissanen TH, Adlercreutz H, Salonen JT (2003) Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch Intern Med 163:1099–1104. https://doi.org/10.1001/archinte.163.9.1099

DOI

161
Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5: e00889. https://doi.org/10.1128/mBio.00889-14

DOI

162
Vonaesch P, Anderson M, Sansonetti PJ (2018) Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuy003

DOI

163
Wahlstrom A, Sayin SI, Marschall HU, Backhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50. https://doi.org/10.1016/j.cmet.2016.05.005

DOI

164
Wampach L (2017) Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front Microbiol 8:738. https://doi.org/10.3389/fmicb.2017.00738

DOI

165
Wang XL, Shin KH, Hur HG, Kim SI (2005) Enhanced biosynthesis of dihydrodaidzein and dihydrogenistein by a newly isolated bovine rumen anaerobic bacterium. J Biotechnol 115:261–269. https://doi.org/10.1016/j.jbiotec.2004.08.014

DOI

166
Wang Z (2011a) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922

DOI

167
Wang Q, Zhang Y, Gao L, Xue Y (2011b) Effects of phytoestrogen, genistein combined with calcium and vitamin D3 on preventing osteoporosis in ovariectomized mice. Wei Sheng Yan Jiu 40:587–590

168
Wang D (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ Res 111:967–981. https://doi.org/10.1161/CIRCRESAHA.112.266502

DOI

169
Wang Z (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. https://doi.org/10.1093/eurheartj/ehu002

DOI

170
Wang Z (2015a) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

DOI

171
Wang L (2015b) Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 421:44–53. https://doi.org/10.1016/j.jim.2014.12.015

DOI

172
Ward HA, Kuhnle GG (2010) Phytoestrogen consumption and association with breast, prostate and colorectal cancer in EPIC Norfolk. Arch Biochem Biophys 501:170–175. https://doi.org/10.1016/j.abb.2010.05.018

DOI

173
Ward HA (2010) Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition–Norfolk in relation to phytoestrogen intake derived from an improved database. Am J Clin Nutr 91:440–448. https://doi.org/10.3945/ajcn.2009.28282

DOI

174
Warrier M (2015) The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. https://doi.org/10.1016/j.celrep.2014.12.036

DOI

175
Webster LT, Siddiqui UA, Lucas SV, Strong JM, Mieyal JJ (1976) Identification of separate acyl-CoA: glycine and acyl-CoA: Lglutamine N-acyltransferase activities in mitochondrial fractions from liver of rhesus monkey and man. J Biol Chem 251:3352–3358

176
Wu IW (2012) Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study. Nephrol Dial Transplant 27:1169–1175. https://doi.org/10.1093/ndt/gfr453

DOI

177
Yang T (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315

DOI

178
Yang K (2017) Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood 129:2667–2679. https://doi.org/10.1182/blood-2016-10-744060

DOI

179
Yisireyili M (2013) Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats. Life Sci 92:1180–1185. https://doi.org/10.1016/j.lfs.2013.05.008

DOI

180
Yokota A (2012) Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 3:455–459. https://doi.org/10.4161/gmic.21216

DOI

181
Zdobnov EM (2017) OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res 45:D744–D749. https://doi.org/10.1093/nar/gkw1119

DOI

182
Zhang J, Wang YJ, Xu JL (2004) Experimental study on prevention and treatment of osteoporosis by phytoestrogen. Zhongguo Zhong Xi Yi Jie He Za Zhi 24:241–243

183
Zhang FM (2013) Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. World J Gastroenterol 19:7213–7216. https://doi.org/10.3748/wjg.v19.i41.7213

DOI

184
Zhang M, Wang K, Chen L, Yin B, Song Y (2016) Is phytoestrogen intake associated with decreased risk of prostate cancer? A systematic review of epidemiological studies based on 17,546 cases. Andrology 4:745–756. https://doi.org/10.1111/andr.12196

DOI

185
Zhang H (2018) Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/beta-catenin signaling. Toxicol Lett 284:29–36. https://doi.org/10.1016/j.toxlet.2017.11.033

DOI

186
Zhao Y (2016) Selenoprotein P neutralizes lipopolysaccharide and participates in hepatic cell endoplasmic reticulum stress response. FEBS Lett 590:4519–4530. https://doi.org/10.1002/1873-3468.12494

DOI

187
Zhao L (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156

DOI

188
Zhu Y (2014) Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA 111:4268–4273. https://doi.org/10.1073/pnas.1316569111

DOI

189
Zhu W (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165:111–124. https://doi.org/10.1016/j.cell.2016.02.011

DOI

190
Zhu W, Wang Z, Tang WHW, Hazen SL (2017) Gut microbegenerated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 135:1671–1673. https://doi.org/10.1161/CIRCULATIONAHA.116.025338

DOI

Outlines

/