[1] Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data.
Science 290, 972-977 .11062127
[2] Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.
Science 289, 905-920 .10937989
[3] Burki, F., Berney, C., and Pawlowski, J. (2002). Phylogenetic position of
Gromia oviformis Dujardin inferred from nuclear-encoded small subunit ribosomal DNA.
Protist 153, 251-260 .12389814
[4] Burki, F., and Pawlowski, J. (2006). Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts.
Mol Biol Evol 23, 1922-1930 .16829542
[5] Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, ?., Nikolaev, S.I., Jakobsen, K.S., and Pawlowski, J. (2007). Phylogenomics reshuffles the eukaryotic supergroups.
PLoS One 2, e790.17726520
[6] Busse, I., and Preisfeld, A. (2003). Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of
Distigma and
Astasia (Euglenozoa).
Int J Syst Evol Microbiol 53, 617-624 .12710635
[7] Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D’Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Müller, K.M.,
(2002). The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. [Correction: BMC Bioinformatics 3, 15.]
BMC Bioinformatics 3, 2.11869452
[8] Cavalier-Smith, T., and Chao, E.E. (1996). Molecular phylogeny of the free-living archezoan
Trepomonas agilis and the nature of the first eukaryote.
J Mol Evol 43, 551-562 .8995052
[9] Chandramouli, P., Topf, M., Ménétret, J.F., Eswar, N., Cannone, J.J., Gutell, R.R., Sali, A., and Akey, C.W. (2008). Structure of the mammalian 80S ribosome at 8.7 A resolution.
Structure 16, 535-548 .18400176
[10] Crease, T.J., and Colbourne, J.K. (1998). The unusually long small-subunit ribosomal RNA of the crustacean,
Daphnia pulex: sequence and predicted secondary structure.
J Mol Evol 46, 307-313 .9493355
[11] Cunningham, C.O., Aliesky, H., and Collins, C.M. (2000). Sequence and secondary structure variation in the
Gyrodactylus (Platyhelminthes: Monogenea) ribosomal RNA gene array.
J Parasitol 86, 567-576 .10864256
[12] Giribet, G., and Wheeler, W.C. (2001). Some unusual small-subunit ribosomal RNA sequences of Metazoans.
Am Mus Novit 3337, 1-16 .
[13] Green, R., and Noller, H.F. (1997). Ribosomes and translation.
Annu Rev Biochem 66, 679-716 .9242921
[14] Hackett, J.D., Yoon, H.S., Li, S., Reyes-Prieto, A., Rümmele, S.E., and Bhattacharya, D. (2007). Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.
Mol Biol Evol 24, 1702-1713 .17488740
[15] Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001). High resolution structure of the large ribosomal subunit from a mesophilic eubacterium.
Cell 107, 679-688 .11733066
[16] Harper, J.T., Waanders, E., and Keeling, P.J. (2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes.
Int J Syst Evol Microbiol 55, 487-496 .15653923
[17] Hudelot, C., Gowri-Shankar, V., Jow, H., Rattray, M., and Higgs, P.G. (2003). RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences.
Mol Phylogenet Evol 28, 241-252 .12878461
[18] Huelsenbeck, J.P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics 17, 754-755 .11524383
[19] Jackson, S.A., Cannone, J.J., Lee, J.C., Gutell, R.R., and Woodson, S.A. (2002). Distribution of rRNA introns in the three-dimensional structure of the ribosome.
J Mol Biol 323, 35-52 .12368097
[20] Jobb, G., von Haeseler, A., and Strimmer, K. (2004). TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics.
BMC Evol Biol 4, 18.15222900
[21] Jow, H., Hudelot, C., Rattray, M., and Higgs, P.G. (2002). Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution.
Mol Biol Evol 19, 1591-1601 .12200486
[22] Keeling, P.J., Burger, G., Durnford, D.G., Lang, B.F., Lee, R.W., Pearlman, R.E., Roger, A.J., and Gray, M.W. (2005). The tree of eukaryotes.
Trends Ecol Evol 20, 670-676 .16701456
[23] Keller, A., F?rster, F., Müller, T., Dandekar, T., Schultz, J., and Wolf, M. (2010). Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.
Biol Direct 5, 4.20078867
[24] Kim, E., and Graham, L.E. (2008). EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata.
PLoS One 3, e2621.18612431
[25] Kostka, M., Hampl, V., Cepicka, I., and Flegr, J. (2004). Phylogenetic position of
Protoopalina intestinalis based on SSU rRNA gene sequence.
Mol Phylogenet Evol 33, 220-224 .15324850
[26] Kumar, S., and Rzhetsky, A. (1996). Evolutionary relationships of eukaryotic kingdoms.
J Mol Evol 42, 183-193 .8919870
[27] Margulis, L. (1970). Origin of Eukaryotic Cells.
New Haven ,
Connecticut:
Yale University Press.
[28] Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M., and Turner, D.H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.
Proc Natl Acad Sci U S A 101, 7287-7292 .15123812
[29] Neefs, J.M., Van de Peer, Y., De Rijk, P., Goris, A., and De Wachter, R. (1991). Compilation of small ribosomal subunit RNA sequences.
Nucleic Acids Res 19, 1987-2015 .2041797
[30] Nikolaev, S.I., Berney, C., Fahrni, J.F., Bolivar, I., Polet, S., Mylnikov, A.P., Aleshin, V.V., Petrov, N.B., and Pawlowski, J. (2004). The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes.
Proc Natl Acad Sci U S A 101, 8066-8071 .15148395
[31] Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis.
Science 289, 920-930 .10937990
[32] Noller, H.F. (1991). Ribosomal RNA and translation.
Annu Rev Biochem 60, 191-227 .1883196
[33] Noller, H.F. (2005). RNA structure: reading the ribosome.
Science 309, 1508-1514 .16141058
[34]
Parallel Mrbayes @ BioHPC. (2011).
http://cbsuapps.tc.cornell.edu/mrbayes.aspx[35] Parfrey, L.W., Barbero, E., Lasser, E., Dunthorn, M., Bhattacharya, D., Patterson, D.J., and Katz, L.A. (2006). Evaluating support for the current classification of eukaryotic diversity.
PLoS Genet 2, e220.17194223
[36] Patron, N.J., Inagaki, Y., and Keeling, P.J. (2007). Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
Curr Biol 17, 887-891 .17462896
[37] Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A.J., Cedhagen, T., Habura, A., and Bowser, S.S. (2003). The evolution of early Foraminifera.
Proc Natl Acad Sci U S A 100, 11494-11498 .14504394
[38] Philippe, H., Snell, E.A., Bapteste, E., Lopez, P., Holland, P.W., and Casane, D. (2004). Phylogenomics of eukaryotes: impact of missing data on large alignments.
Mol Biol Evol 21, 1740-1752 .15175415
[39] Polet, S., Berney, C., Fahrni, J., and Pawlowski, J. (2004). Small-subunit ribosomal RNA gene sequences of Phaeodarea challenge the monophyly of Haeckel’s Radiolaria.
Protist 155, 53-63 .15144058
[40] Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation.
Cell 108, 557-572 .11909526
[41] Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S.C., Roure, B., Burger, G., L?ffelhardt, W., Bohnert, H.J., Philippe, H., and Lang, B.F. (2005). Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
Curr Biol 15, 1325-1330 .16051178
[42] Ronquist, F., and Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models.
Bioinformatics 19, 1572-1574 .12912839
[43] Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F.,
(2000). Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution.
Cell 102, 615-623 .11007480
[44] Sch?niger, M., and von Haeseler, A. (1994). A stochastic model for the evolution of autocorrelated DNA sequences.
Mol Phylogenet Evol 3, 240-247 .7529616
[45] Schultz, J., and Wolf, M. (2009). ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics.
Mol Phylogenet Evol 52, 520-523 .19489124
[46] Seibel, P.N., Müller, T., Dandekar, T., Schultz, J., and Wolf, M. (2006). 4SALE—a tool for synchronous RNA sequence and secondary structure alignment and editing.
BMC Bioinformatics 7, 498.17101042
[47] Shalchian-Tabrizi, K., Eikrem, W., Klaveness, D., Vaulot, D., Minge, M.A., Le Gall, F., Romari, K., Throndsen, J., Botnen, A., Massana, R.,
(2006). Telonemia, a new protist phylum with affinity to chromist lineages.
Proc Biol Sci 273, 1833-1842 .16790418
[48] Shalchian-Tabrizi, K., Kauserud, H., Massana, R., Klaveness, D., and Jakobsen, K.S. (2007). Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia.
Protist 158, 173-180 .17196879
[49] Siebert, S., and Backofen, R. (2005). MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons.
Bioinformatics 21, 3352-3359 .15972285
[50] Spahn, C.M.T., Beckmann, R., Eswar, N., Penczek, P.A., Sali, A., Blobel, G., and Frank, J. (2001). Structure of the 80S ribosome from
Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions.
Cell 107, 373-386 .11701127
[51] Stocsits, R.R., Letsch, H., Hertel, J., Misof, B., and Stadler, P.F. (2009). Accurate and efficient reconstruction of deep phylogenies from structured RNAs.
Nucleic Acids Res 37, 6184-6193 .19723687
[52] Sweeney, R., Chen, L., and Yao, M.C. (1994). An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence.
Mol Cell Biol 14, 4203-4215 .8196658
[53] Telford, M.J., Wise, M.J., and Gowri-Shankar, V. (2005). Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the bilateria.
Mol Biol Evol 22, 1129-1136 .15689526
[54] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.
Nucleic Acids Res 24, 4876-4882 .
[55] Van de Peer, Y., and De Wachter, R. (1997). Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA.
J Mol Evol 45, 619-630 .9419239
[56] Wimberly, B.T., Brodersen, D.E., Clemons, W.M. Jr, Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit.
Nature 407, 327-339 .11014182
[57] Wolf, M., Ruderisch, B., Dandekar, T., Schultz, J., and Müller, T. (2008). ProfDistS: (profile-) distance based phylogeny on sequence—structure alignments.
Bioinformatics 24, 2401-2402 .18723521
[58] Wuyts, J., Perrière, G., and Van De Peer, Y. (2004). The European ribosomal RNA database.
Nucleic Acids Res 32, D101-D103 .14681368
[59] Wuyts, J., Van de Peer, Y., and De Wachter, R. (2001). Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA.
Nucleic Acids Res 29, 5017-5028 .11812832
[60] Xie, Q., Tian, X., Qin, Y., and Bu, W. (2009). Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment.
Mol Phylogenet Evol 50, 310-316 .19027081
[61] Xie, Q., Tian, Y., Zheng, L., and Bu, W. (2008). 18S rRNA hyper-elongation and the phylogeny of Euhemiptera (Insecta: Hemiptera).
Mol Phylogenet Evol 47, 463-471 .18358745
[62] Yusupov, M.M., Yusupova, G.Z.H., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H.D., and Noller, H.F. (2001). Crystal structure of the ribosome at 5.5 A resolution.
Science 292, 883-896 .11283358