RESEARCH ARTICLE

SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion

Expand
  • 1. The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China; 2. College of Pharmacy, Nankai University, Tianjin 300071, China; 3. School of Medicine, Nankai University, Tianjin 300071, China; 4. Current address: Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA

Received date: 21 Jul 2011

Accepted date: 31 Aug 2011

Published date: 01 Oct 2011

Abstract

Bone marrow mesenchymal stem cells (MSCs) are considered as a promising cell source to treat the acute myocardial infarction. However, over 90% of the stem cells usually die in the first three days of transplantation. Survival potential, migration ability and paracrine capacity have been considered as the most important three factors for cell transplantation in the ischemic cardiac treatment. We hypothesized that stromal-derived factor-1 (SDF-1)/CXCR4 axis plays a critical role in the regulation of these processes. In this study, apoptosis was induced by exposure of MSCs to H2O2 for 2 h. After re-oxygenation, the SDF-1 pretreated MSCs demonstrated a significant increase in survival and proliferation. SDF-1 pretreatment also enhanced the migration and increased the secretion of pro-survival and angiogenic cytokines including basic fibroblast growth factor and vascular endothelial growth factor. Western blot and RT-PCR demonstrated that SDF-1 pretreatment significantly activated the pro-survival Akt and Erk signaling pathways and up-regulated Bcl-2/Bax ratio. These protective effects were partially inhibited by AMD3100, an antagonist of CXCR4. We conclude that the SDF-1/CXCR4 axis is critical for MSC survival, migration and cytokine secretion.

Cite this article

Xiaolei Liu, Biyan Duan, Zhaokang Cheng, Xiaohua Jia, Lina Mao, Hao Fu, Yongzhe Che, Lailiang Ou, Lin Liu, Deling Kong . SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion[J]. Protein & Cell, 2011 , 2(10) : 845 -854 . DOI: 10.1007/s13238-011-1097-z

References

[1] Abbott, J.D., Huang, Y., Liu, D., Hickey, R., Krause, D.S., and Giordano, F.J. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury.Circulation 110, 3300–3305 15533866.
[2] Amado, L.C., Saliaris, A.P., Schuleri, K.H., St John, M., Xie, J.S., Cattaneo, S., Durand, D.J., Fitton, T., Kuang, J.Q., Stewart, G., (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sci U S A 102, 11474–11479 16061805.
[3] Askari, A.T., Unzek, S., Popovic, Z.B., Goldman, C.K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S.G., Thomas, J.D., DiCorleto, P.E., (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy.Lancet 362, 697–703 12957092.
[4] Broxmeyer, H.E., Kohli, L., Kim, C.H., Lee, Y., Mantel, C., Cooper, S., Hangoc, G., Shaheen, M., Li, X., and Clapp, D.W. (2003). Stromal cell-derived factor-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G(alpha)i proteins and enhances engraftment of competitive, repopulating stem cells.J Leukoc Biol 73, 630–638 12714578.
[5] Cheng, Z., Liu, X., Ou, L., Zhou, X., Liu, Y., Jia, X., Zhang, J., Li, Y., and Kong, D. (2008a). Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction.Cardiovasc Drugs Ther 22, 363–371 18461431.
[6] Cheng, Z., Ou, L., Liu, Y., Liu, X., Li, F., Sun, B., Che, Y., Kong, D., Yu, Y., and Steinhoff, G. (2008b). Granulocyte colony-stimulating factor exacerbates cardiac fibrosis after myocardial infarction in a rat model of permanent occlusion.Cardiovasc Res 80, 425–434 18676396.
[7] Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., Liu, X., Li, Y., Ward, C.A., Melo, L.G., (2008c). Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance.Mol Ther 16, 571–579 18253156.
[8] Choi, S.C., Kim, S.J., Choi, J.H., Park, C.Y., Shim, W.J., and Lim, D.S. (2008). Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways.Stem Cells Dev 17, 725–736 18788932.
[9] Dai, W., Hale, S.L., Martin, B.J., Kuang, J.Q., Dow, J.S., Wold, L.E., and Kloner, R.A. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects.Circulation 112, 214–223 15998673.
[10] Dziembowska, M., Tham, T.N., Lau, P., Vitry, S., Lazarini, F., and Dubois-Dalcq, M. (2005). A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors.Glia 50, 258–269 15756692.
[11] Fazel, S.S., Angoulvant, D., Butany, J., Weisel, R.D., and Li, R.K. (2008). Mesenchymal stem cells engineered to overexpress stem cell factor improve cardiac function but have malignant potential.J Thorac Cardiovasc Surg 136, 1388–1389 19026843.
[12] Fischer, K.M., Cottage, C.T., Wu, W., Din, S., Gude, N.A., Avitabile, D., Quijada, P., Collins, B.L., Fransioli, J., and Sussman, M.A. (2009). Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.Circulation 120, 2077–2087 19901187.
[13] Gupta, K., Kshirsagar, S., Li, W., Gui, L., Ramakrishnan, S., Gupta, P., Law, P.Y., and Hebbel, R.P. (1999). VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling.Exp Cell Res 247, 495–504 10066377.
[14] Haider, H.Kh., and Ashraf, M. (2008). Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation.J Mol Cell Cardiol 45, 554–566 18561945.
[15] Hu, X., Dai, S., Wu, W.J., Tan, W., Zhu, X., Mu, J., Guo, Y., Bolli, R., and Rokosh, G. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis.Circulation 116, 654–663 17646584.
[16] Jaleel, M.A., Tsai, A.C., Sarkar, S., Freedman, P.V., and Rubin, L.P. (2004). Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival.Mol Hum Reprod 10, 901–909 15475370.
[17] Joo, E.K., Broxmeyer, H.E., Kwon, H.J., Kang, H.B., Kim, J.S., Lim, J.S., Choe, Y.K., Choe, I.S., Myung, P.K., and Lee, Y. (2004). Enhancement of cell survival by stromal cell-derived factor-1/CXCL12 involves activation of CREB and induction of Mcl-1 and c-Fos in factor-dependent human cell line MO7e.Stem Cells Dev 13, 563–570 15588513.
[18] Jürgensmeier, J.M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J.C. (1998). Bax directly induces release of cytochrome c from isolated mitochondria.Proc Natl Acad Sci U S A 95, 4997–5002 9560217.
[19] Kinnaird, T., Stabile, E., Burnett, M.S., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004a). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.Circ Res 94, 678–685 14739163.
[20] Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004b). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.Circulation 109, 1543–1549 15023891.
[21] Kucia, M., Jankowski, K., Reca, R., Wysoczynski, M., Bandura, L., Allendorf, D.J., Zhang, J., Ratajczak, J., and Ratajczak, M.Z. (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.J Mol Histol 35, 233–245 15339043.
[22] Kumar, D., and Jugdutt, B.I. (2003). Apoptosis and oxidants in the heart.J Lab Clin Med 142, 288–297 14647032.
[23] Lataillade, J.J., Clay, D., Bourin, P., Hérodin, F., Dupuy, C., Jasmin, C., and Le Bousse-Kerdilès, M.C. (2002). Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism.Blood 99, 1117–1129 11830456.
[24] Li, W., Ma, N., Ong, L.L., Nesselmann, C., Klopsch, C., Ladilov, Y., Furlani, D., Piechaczek, C., Moebius, J.M., Lützow, K., (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function.Stem Cells 25, 2118–2127 17478584.
[25] Mangi, A.A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J.S., and Dzau, V.J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.Nat Med 9, 1195–1201 12910262.
[26] Menasché, P. (2008). Current status and future prospects for cell transplantation to prevent congestive heart failure.Semin Thorac Cardiovasc Surg 20, 131–137 18707646.
[27] Misao, J., Hayakawa, Y., Ohno, M., Kato, S., Fujiwara, T., and Fujiwara, H. (1996). Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction.Circulation 94, 1506–1512 8840837.
[28] Nagaya, N., Kangawa, K., Itoh, T., Iwase, T., Murakami, S., Miyahara, Y., Fujii, T., Uematsu, M., Ohgushi, H., Yamagishi, M., (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy.Circulation 112, 1128–1135 16103243.
[29] Pasha, Z., Wang, Y., Sheikh, R., Zhang, D., Zhao, T., and Ashraf, M. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium.Cardiovasc Res 77, 134–142 18006467.
[30] Peters, R., Leyvraz, S., and Perey, L. (1998). Apoptotic regulation in primitive hematopoietic precursors.Blood 92, 2041–2052 9731062.
[31] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells.Science 284, 143–147 10102814.
[32] Reed, J.C. (1998). Bcl-2 family proteins.Oncogene 17, 3225–3236 9916985.
[33] Rochefort, G.Y., Delorme, B., Lopez, A., Hérault, O., Bonnet, P., Charbord, P., Eder, V., and Domenech, J. (2006). Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia.Stem Cells 24, 2202–2208 16778152.
[34] Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A., Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., (2003). Regulation of the chemokine receptor CXCR4 by hypoxia.J Exp Med 198, 1391–1402 14597738.
[35] Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J., and Kessler, P.D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation 105, 93–98 11772882.
[36] Trivedi, P.S., Tray, N.J., Nguyen, T.D., Nigam, N., and Gallicano, G.I. (2010). Mesenchymal Stem Cell Therapy for Treatment of Cardiovascular Disease: Helping people sooner or later. Stem Cells Dev 19, 1109–1120 .
[37] Xie, C.Q., Zhang, J., Xiao, Y., Zhang, L., Mou, Y., Liu, X., Akinbami, M., Cui, T., and Chen, Y.E. (2007). Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model.Stem Cells Dev 16, 25–29 17348803.
[38] Xu, R., Chen, J., Cong, X., Hu, S., and Chen, X. (2008). Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2.J Cell Biochem 103, 256–269 17497701.
[39] Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked.Science 275, 1129–1132 9027314.
[40] Zhang, J., and Cai, H. (2010). Netrin-1 prevents ischemia/reperfusion-induced myocardial infarction via a DCC/ERK1/2/eNOS(s1177)/NO/DCC feed-forward mechanism. J Mol Cell Cardiol 48, 1060–1070 .
[41] Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A.T., Popovic, Z.B., Koc, O.N., and Penn, M.S. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction.FASEB J 21, 3197–3207 17496162
Outlines

/