REVIEW

IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes

  • Cécile Apert ,
  • Paola Romagnoli ,
  • Joost P. M. van Meerwijk
Expand
  • CPTP, Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France

Received date: 06 Feb 2017

Accepted date: 04 May 2017

Published date: 27 Apr 2018

Copyright

2017 The Author(s) 2017. This article is an open access publication

Abstract

Immunosuppressive regulatory T lymphocytes (Treg) expressing the transcription factor Foxp3 play a vital role in the maintenance of tolerance of the immunesystem to self and innocuous non-self. Most Treg that are critical for the maintenance of tolerance to self, develop as an independent T-cell lineage from common T cell precursors in the thymus. In this organ, their differentiation requires signals from the T cell receptor for antigen, from co-stimulatory molecules, as well as from cytokine-receptors. Here we focus on the cytokines implicated in thymic development of Treg, with a particular emphasis on the roles of interleukin-2 (IL-2) and IL-15. The more recently appreciated involvement of TGF-β in thymic Treg development is also briefly discussed. Finally, we discuss how cytokine-dependence of Treg development allows for temporal, quantitative, and potentially qualitative modulation of this process.

Cite this article

Cécile Apert , Paola Romagnoli , Joost P. M. van Meerwijk . IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes[J]. Protein & Cell, 2018 , 9(4) : 322 -332 . DOI: 10.1007/s13238-017-0425-3

1
Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3(+) regulatory T cells specific for self antigen expressed and presented by Aire(+) medullary thymic epithelial cells. Nature Immunol 8:351–358

DOI

2
Bayer AL, Lee JY, de la Barrera A, Surh CD, Malek TR (2008) A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells. J Immunol 181:225–234

DOI

3
Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet 27:20–21

DOI

4
Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory Tcells in immune tolerance. Annu Rev Immunol 30:733–758

DOI

5
Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Kuchler R, Huber W, Kyewski B, Steinmetz LM (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nature Immunol 16:933–941

DOI

6
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genetics 27:68–73

DOI

7
Burchill MA, Goetz CA, Prlic M, O’Neil JJ, Harmon IR, Bensinger SJ, Turka LA, Brennan P, Jameson SC, Farrar MA (2003) Distinct Effects of STAT5 Activation on CD4+ and CD8+ T Cell Homeostasis: Development of CD4+CD25+ Regulatory T Cells versus CD8+ Memory T Cells. J Immunol 171:5853–5864

DOI

8
Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 178:280–290

DOI

9
Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA (2008) Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28:112–121

DOI

10
Capone M, Romagnoli P, Beermann F, MacDonald HR, van Meerwijk JPM (2001) Dissociation of thymic positive and negative selection in transgenic mice expressing major histocompatibility complex class I molecules exclusively on thymic cortical epithelial cells. Blood 97:1336–1342

DOI

11
Caramalho I, Nunes-Silva V, Pires AR, Mota C, Pinto AI, Nunes-Cabaco H, Foxall RB, Sousa AE (2015) Human regulatory T-cell development is dictated by Interleukin-2 and-15 expressed in a non-overlapping pattern in the thymus. J Autoimmun 56:98–110

DOI

12
Castillo EF, Acero LF, Stonier SW, Zhou D, Schluns KS (2010) Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation. Blood 116:2494–2503

DOI

13
Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P, Ignatowicz L (2013) Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497:258–262

DOI

14
Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, Gasteiger G, Feng Y, Fontenot JD, Rudensky AY (2016) An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 17:1322–1333

DOI

15
Colpitts SL, Stonier SW, Stoklasek TA, Root SH, Aguila HL, Schluns KS, Lefrancois L (2013) Transcriptional regulation of IL-15 expression during hematopoiesis. J Immunol 191:3017–3024

DOI

16
Coquet JM, Ribot JC, Babala N, Middendorp S, van der Horst G, Xiao Y, Neves JF, Fonseca-Pereira D, Jacobs H, Pennington DJ (2013) Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J Exp Med 210:715–728

DOI

17
Cowan JE, McCarthy NI, Anderson G (2016) CCR7 controls thymus recirculation, but not production and emigration, of Foxp3(+) T Cells. Cell reports 14:1041–1048

DOI

18
Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, Kitano S, Ishii M, Tani-ichi S, Ikuta K (2014) Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA 111:1915–1920

DOI

19
Cuss SM, Green EA (2012) Abrogation of CD40-CD154 signaling impedes the homeostasis of thymic resident regulatory T cells by altering the levels of IL-2, but does not affect regulatory T cell development. J Immunol 189:1717–1725

DOI

20
D’Cruz LM, Klein L (2005) Development and function of agonistinduced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159

DOI

21
De Smedt M, Verhasselt B, Kerre T, Vanhecke D, Naessens E, Leclercq G, Renauld JC, Van Snick J, Plum J (2000) Signals from the IL-9 receptor are critical for the early stages of human intrathymic T cell development. J Immunol 164:1761–1767

DOI

22
Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, Powrie F (2005) T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med 201:737–746

DOI

23
Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D, Liblau R, Salomon BL (2003) Continuous activation of autoreactive CD4+ CD25+ regulatory T Cells in the steady state. J Exp Med 198:737–746

DOI

24
Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang H-D, Bopp T, Schmitt E (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5:e38

DOI

25
Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol 3:3

DOI

26
Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 6:1142–1151

DOI

27
Hale JS, Fink PJ (2009) Back to the thymus: peripheral T cells come home. Immunol Cell Biol 87:58–64

DOI

28
Hanabuchi S, Ito T, Park WR, Watanabe N, Shaw JL, Roman E, Arima K, Wang YH, Voo KS, Cao W (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J Immunol 184:2999–3007

DOI

29
Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21:267–277

DOI

30
Hu Z, Lancaster JN, Sasiponganan C, Ehrlich LI (2015) CCR4 promotes medullary entry and thymocyte-dendritic cell interactions required for central tolerance. J Exp Med 212:1947–1965

DOI

31
Josefowicz SZ, Lu LF, Rudensky AY (2012a) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

DOI

32
Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY (2012b) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–399

DOI

33
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M (2014) A signal integration model of thymic selection and natural regulatory T cell commitment. J Immunol 193:5983–5996

DOI

34
Kieback E, Hilgenberg E, Stervbo U, Lampropoulou V, Shen P, Bunse M, Jaimes Y, Boudinot P, Radbruch A, Klemm U (2016) Thymus-derived regulatory T cells are positively selected on natural self-antigen through cognate interactions of high functional avidity. Immunity 44:1114–1126

DOI

35
Kim HJ, Cantor H (2011) Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Sem Immunol 23:446–452

DOI

36
Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptorinduced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204:1543–1551

DOI

37
Kisielow P, Miazek A (1995) Positive selection of Tcells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor. J Exp Med 181:1975–1984

DOI

38
Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, Yasuda K, Motooka D, Nakamura S, Kondo M (2017) Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nature Immunol 18:173–183

DOI

39
Klein L, Jovanovic K (2011) Regulatory T cell lineage commitment in the thymus. Sem Immunol 23:401–409

DOI

40
Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9:833–844

DOI

41
Konkel JE, Jin W, Abbatiello B, Grainger JR, Chen W (2014) Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc Natl Acad Sci USA 111:E465–E473

DOI

42
Kurd N, Robey EA (2016) T-cell selection in the thymus: a spatial and temporal perspective. Immunol Rev 271:114–126

DOI

43
Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606

DOI

44
Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH (1996) Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383:81–85

DOI

45
Le Borgne M, Ladi E, Dzhagalov I, Herzmark P, Liao YF, Chakraborty AK, Robey EA (2009) The impact of negative selection on thymocyte migration in the medulla. Nat Immunol 10:823–830

DOI

46
Li MO, Sanjabi S, Flavell RA (2006) Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and-independent mechanisms. Immunity 25:455–471

DOI

47
Lio CW, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28:100–111

DOI

48
Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA, Rudensky AY (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci USA 105:11903–11908

DOI

49
Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 9:632–640

DOI

50
Love PE, Bhandoola A (2011) Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 11:469–477

DOI

51
Lucas B, McCarthy NI, Baik S, Cosway E, James KD, Parnell SM, White AJ, Jenkinson WE, Anderson G (2016) Control of the thymic medulla and its influence on alphabetaT-cell development. Immunol Rev 271:23–37

DOI

52
Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL, Schenkel JM, Boomer JS, Green JM, Yagita H (2014) Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15:473–481

DOI

53
Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit AS, Kang C, Geddes JE, Allison JP (2013) Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339:1219–1224

DOI

54
Malek TR, Porter BO, Codias EK, Scibelli P, Yu A (2000) Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164:2905–2914

DOI

55
Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178

DOI

56
Marie JC, Letterio JJ, Gavin M, Rudensky AY (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 201:1061–1067

DOI

57
Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25:441–454

DOI

58
Marshall D, Sinclair C, Tung S, Seddon B (2014) Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. J Immunol 193:5525–5533

DOI

59
Mazzucchelli R, Hixon JA, Spolski R, Chen X, Li WQ, Hall VL, Willette-Brown J, Hurwitz AA, Leonard WJ, Durum SK (2008) Development of regulatory Tcells requires IL-7Ralpha stimulation by IL-7 or TSLP. Blood 112:3283–3292

DOI

60
McCaughtry TM, Wilken MS, Hogquist KA (2007) Thymic emigration revisited. J Exp Med 204:2513–2520

DOI

61
McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med 205:2575–2584

DOI

62
Meredith M, Zemmour D, Mathis D, Benoist C (2015) Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat Immunol 16:942–949

DOI

63
Ohigashi I, Kozai M, Takahama Y (2016) Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 271:10–22

DOI

64
Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37:785–799

DOI

65
Ouyang W, Beckett O, Ma Q, Li MO (2010) Transforming growth factor-beta signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32:642–653

DOI

66
Pelly VS, Kannan Y, Coomes SM, Entwistle LJ, Ruckerl D, Seddon B, MacDonald AS, McKenzie A, Wilson MS (2016) IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol 9:1407–1417

DOI

67
Pennington DJ, Silva-Santos B, Silberzahn T, Escorcio-Correia M, Woodward MJ, Roberts SJ, Smith AL, Dyson PJ, Hayday AC (2006) Early events in the thymus affect the balance of effector and regulatory T cells. Nature 444:1073–1077

DOI

68
Popmihajlov Z, Xu D, Morgan H, Milligan Z, Smith KA (2012) Conditional IL-2 gene deletion: consequences for T cell proliferation. Front Immunol 3:102

DOI

69
Ribot J, Enault G, Pilipenko S, Huchenq A, Calise M, Hudrisier D, Romagnoli P, van Meerwijk JPM (2007) Shaping of the autoreactive regulatory T cell repertoire by thymic cortical positive selection. J Immunol 179:6741–6748

DOI

70
Romagnoli P, Hudrisier D, van Meerwijk JPM (2002) Preferential recognition of self-antigens despite normal thymic deletion of CD4+CD25+ regulatory T cells. J Immunol 168:1644–1648

DOI

71
Romagnoli P, Ribot J, Tellier J, van Meerwijk JPM (2008) Thymic and peripheral generation of CD4+Foxp3+ regulatory Tcells. In: Jiang S (ed) Regulatory T cells and clinical application. Springer Science+Business Media, New York, pp 29–55

DOI

72
Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, Noelle RJ, Horak I (1995) Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 25:3053–3059

DOI

73
Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

DOI

74
Shevach EM (2011) Biological functions of regulatory T cells. Adv Immunol 112:137–176

DOI

75
Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Hollander GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K (2013) IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRgammadelta+ intraepithelial lymphocytes. J Immunol 190:6173–6179

DOI

76
Soper DM, Kasprowicz DJ, Ziegler SF (2007) IL-2Rbeta links IL-2R signaling with Foxp3 expression. Eur J Immunol 37:1817–1826

DOI

77
Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, Mueller DL, Jameson SC, Hogquist KA (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proc Natl Acad Sci USA 110:4679–4684

DOI

78
Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E, Saveanu L, Chen Y, van Endert P, Agerberth B, Diana J (2015) Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43:304–317

DOI

79
Suzuki H, Kundig T, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard J, Ohashi P, Griesser H (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268(5216):1472–1476

DOI

80
Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I (1999) Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 190:1561–1572

DOI

81
Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162

DOI

82
Tai X, Erman B, Alag A, Mu J, Kimura M, Katz G, Guinter T, McCaughtry T, Etzensperger R, Feigenbaum L (2013) Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38:1116–1128

DOI

83
Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H (2015) Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163:975–987

DOI

84
Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK, Zheng XX, Strom TB, Bluestone JA (2003) Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352

DOI

85
Tani-ichi S, Shimba A, Wagatsuma K, Miyachi H, Kitano S, Imai K, Hara T, Ikuta K (2013) Interleukin-7 receptor controls development and maturation of late stages of thymocyte subpopulations. Proc Natl Acad Sci USA 110:612–617

DOI

86
Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Perals C, Leobon B, Fazilleau N, Joffre OP, Robey EA (2015) Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol 16:628–634

DOI

87
Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U, Duber S, Geffers R, Giehr P (2013) Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol 190:3180–3188

DOI

88
Ueno T, Saito F, Gray DH, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200:493–505

DOI

89
Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151

DOI

90
Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA (2008) IL-2, -7, and-15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 181:3285–3290

DOI

91
von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE, Murray R (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181:1519–1526

DOI

92
Vuddamalay, Y., and van Meerwijk, J. (2017). CD28neg and CD28low CD8+ regulatory T cells: Of Mice and Men. Front Immunol 8.

DOI

93
Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory Tcells in human thymus. Nature 436:1181–1185

DOI

94
Weist BM, Kurd N, Boussier J, Chan SW, Robey EA (2015) Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat Immunol 16:635–641

DOI

95
Wilkinson RW, Anderson G, Owen JJ, Jenkinson EJ (1995) Positive selection of thymocytes involves sustained interactions with the thymic microenvironment. J Immunol 155:5234–5240

96
Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530

DOI

97
Wirnsberger G, Mair F, Klein L (2009) Regulatory T cells differentiation of thymocytes does not require a dedicated antigenpresenting cell but is under T cell-intrinsic developmental control. Proc Natl Acad Sci USA 106:10278–10283

DOI

98
Wolf M, Schimpl A, Hunig T (2001) Control of T cell hyperactivation in IL-2-deficient mice by CD4(+)CD25(-) and CD4(+)CD25(+) T cells: evidence for two distinct regulatory mechanisms. Eur J Immunol 31:1637–1645

DOI

99
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, Suciu-Foca N (2016) Molecular and cellular characterization of human CD8 T suppressor cells. Front Immunol 7:549

DOI

100
Yamano T, Nedjic J, Hinterberger M, Steinert M, Koser S, Pinto S, Gerdes N, Lutgens E, Ishimaru N, Busslinger M (2015) Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity 42:1048–1061

DOI

101
Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589–594

DOI

102
Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

DOI

103
Yu W, Nagaoka H, Jankovic M, Misulovin Z, Suh H, Rolink A, Melchers F, Meffre E, Nussenzweig MC (1999) Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400:682–687

DOI

104
Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, Lio CW, Li X, Huang Y, Vijayanand P (2016) Control of Foxp3 stability through modulation of TET activity. J Exp Med 213:377–397

DOI

105
Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812

DOI

Outlines

/