The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control
Received date: 16 May 2017
Accepted date: 21 Jun 2017
Published date: 22 Mar 2018
Copyright
Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.
Key words: BAF60a; BAF60b; BAF60c; chromatinremodeling; SWI/SNF; energy metabolism; nutrient sensing; glucose; lipid; skeletal muscle; liver
Ruo-Ran Wang , Ran Pan , Wenjing Zhang , Junfen Fu , Jiandie D. Lin , Zhuo-Xian Meng . The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control[J]. Protein & Cell, 2018 , 9(2) : 207 -215 . DOI: 10.1007/s13238-017-0442-2
1 |
Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265
|
2 |
Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198
|
3 |
Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312
|
4 |
Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966
|
5 |
Cotton P, Soulard A, Wesolowski-Louvel M, Lemaire M (2012) The SWI/SNF KlSnf2 subunit controls the glucose signaling pathway to coordinate glycolysis and glucose transport in Kluyveromyces lactis. Eukaryot Cell 11:1382–1390
|
6 |
Debril MB, Gelman L, Fayard E, Annicotte JS, Rocchi S, Auwerx J (2004) Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J Biol Chem 279:16677–16686
|
7 |
DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163
|
8 |
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J,Kaul R
|
9 |
Elfring LK, Deuring R, McCallum CM, Peterson CL, Tamkun JW (1994) Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol 14:2225–2234
|
10 |
Euskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, Rozowsky J, Bhardwaj N,Gerstein MB, Snyder M (2011) Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS genetics 7: e1002008
|
11 |
Ferrannini E, Simonson DC, Katz LD, Reichard G Jr, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA (1988) The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 37:79–85
|
12 |
Flajollet S, Lefebvre B, Cudejko C, Staels B, Lefebvre P (2007) The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Mol Cell Endocrinol 270:23–32
|
13 |
Gaster M, Staehr P, Beck-Nielsen H, Schroder HD, Handberg A (2001) GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50:1324–1329
|
14 |
Gatfield D, Le Martelot G,Vejnar CE, Gerlach D, Schaad O,Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM
|
15 |
Glass CK, Witztum JL (2001) Atherosclerosis the road ahead. Cell 104:503–516
|
16 |
Goldstein JL, Brown MS (2015) A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161:161–172
|
17 |
Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Ann Rev Immunol 29:415–445
|
18 |
Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr,Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr,Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110:227–239
|
19 |
Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology 29:99–107
|
20 |
Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420
|
21 |
He J,Watkins S,Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823
|
22 |
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G,Yoon C, Puigserver P
|
23 |
Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484
|
24 |
Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80
|
25 |
Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK (2003) BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol 23:6210–6220
|
26 |
Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K (2008) Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7:159–172
|
27 |
Kadoch C,Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592–601
|
28 |
Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T
|
29 |
Keating ST, El-Osta A (2015) Epigenetics and metabolism. Circ Res 116:715–736
|
30 |
Kotronen A, Yki-Jarvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:27–38
|
31 |
Lal S, Alam MM, Hooda J, Shah A, Cao TM, Xuan Z, Zhang L (2016) The Swi3 protein plays a unique role in regulating respiration in eukaryotes. Biosci Rep 36:e00350
|
32 |
Lamba DA, Hayes S, Karl MO, Reh T (2008) Baf60c is a component of the neural progenitor-specific BAF complex in developing retina. Dev Dyn 237:3016–3023
|
33 |
Latasa MJ, Griffin MJ, Yang SM, Kang C, Sul HS (2003) Occupancy and function of the −150 sterol regulatory element and −65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol Cell Biol 23:5896–5907
|
34 |
Lee YS, Sohn DH, Han D,Lee HW, Seong RH, Kim JB (2007) Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression. Mol Cell Biol 27:438–452
|
35 |
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856
|
36 |
Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ
|
37 |
Li S, Liu C, Li N, Hao T, Han T, Hill DE, Vidal M, Lin JD (2008) Genome-wide coactivation analysis of PGC-1 alpha identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metabolism 8:105–117
|
38 |
Li T, Chiang JY (2013) Nuclear receptors in bile acid metabolism. Drug Metab Rev 45:145–155
|
39 |
Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112
|
40 |
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN
|
41 |
Liu C,Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481
|
42 |
Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O (2015) SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 24(10):145–171
|
43 |
Meng ZX,Gong J, Chen Z,Sun J,Xiao Y,Wang L, Li Y,Liu J,Xu XZS, Lin JD (2017) Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Mol Cell 66(332–344):e334
|
44 |
Meng ZX, Li S, Wang L, Ko HJ, Lee Y, Jung DY, Okutsu M, Yan Z, Kim JK, Lin JD (2013) Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nat Med 19:640–645
|
45 |
Meng ZX, Wang L, Chang L, Sun J, Bao J, Li Y, Chen YE, Lin JD (2015) A diet-sensitive BAF60a-mediated pathway links hepatic bile acid metabolism to cholesterol absorption and atherosclerosis. Cell Rep 13:1658–1669
|
46 |
Meng ZX, Wang L, Xiao Y, Lin JD (2014) The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes 63:1533–1545
|
47 |
Michel BC, Kadoch C (2017) A SMARCD2-containing mSWI/SNF complex is required for granulopoiesis. Nat Genet 49:655–657
|
48 |
Mogensen M, Sahlin K,Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599
|
49 |
Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N
|
50 |
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S,Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E
|
51 |
Nader GA, Esser KA (2001) Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 90:1936–1942
|
52 |
Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858
|
53 |
Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R, Schon MR, Bluher M, Punkt K (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29:895–900
|
54 |
Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH (2008) BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem 283:11924–11934
|
55 |
Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374
|
56 |
Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32
|
57 |
Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583
|
58 |
Priam P, Krasteva V, Rousseau P, D’Angelo G, Gaboury L, Sauvageau G, Lessard JA (2017) SMARCD2 subunit of SWI/SNF chromatinremodeling complexes mediates granulopoiesis through a CEBP varepsilon dependent mechanism. Nat Genet 49:753–764
|
59 |
Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809
|
60 |
Rutter J, Reick M, McKnight SL (2002) Metabolism and the control of circadian rhythms. Annu Rev Biochem 71:307–331
|
61 |
Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR (2012) Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA 109:E252–E259
|
62 |
Shain AH, Pollack JR (2013) The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8:e55119
|
63 |
Simoneau JA, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83:166–171
|
64 |
Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54:1926–1933
|
65 |
Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nature medicine 8:1211–1217
|
66 |
Sudarsanam P, Winston F (2000) The SWI/SNF family nucleosomeremodeling complexes and transcriptional control. Trends Genet 16:345–351
|
67 |
Surabhi RM, Daly LD, Cattini PA (1999) Evidence for evolutionary conservation of a physical linkage between the human BAF60b, a subunit of SWI/SNF complex, and thyroid hormone receptor interacting protein-1 genes on chromosome 17. Genome 42:545–549
|
68 |
Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG (2007) Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci U S A 104:846–851
|
69 |
Tao W, Chen S, Shi G, Guo J, Xu Y, Liu C (2011) SWItch/sucrose nonfermentable (SWI/SNF) complex subunit BAF60a integrates hepatic circadian clock and energy metabolism. Hepatology 54:1410–1420
|
70 |
Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP (1982) The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31:957–963
|
71 |
Varela I, Tarpey P, Raine K,Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J
|
72 |
Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR (1996) Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev 10:2117–2130
|
73 |
Wang Y, Wong RH, Tang T, Hudak CS, Yang D, Duncan RE, Sul HS (2013) Phosphorylation and recruitment of BAF60c in chromatin remodeling for lipogenesis in response to insulin. Mol Cell 49:283–297
|
74 |
Waters DD, Brotons C, Chiang CW, Ferrieres J, Foody J, Jukema JW, Santos RD, Verdejo J,Messig M, McPherson R
|
75 |
Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE
|
76 |
Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409–448
|
77 |
Wilson BG, Roberts CWM (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11:481–492
|
78 |
Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, Puchalka J, Mertes C, Gagneur J, Ziegenhain C
|
79 |
Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136:200–206
|
80 |
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC
|
81 |
Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loophelix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75:187–197
|
82 |
Yoon JC, Puigserver P,Chen G, Donovan J, Wu Z,Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK
|
83 |
Zhang P, Li L, Bao Z, Huang F (2016) Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism. Nutr Metab 13:30
|
/
〈 |
|
〉 |