RESEARCH ARTICLE

Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs

  • Yi Yang 1 ,
  • Han Wu 2 ,
  • Xiangjin Kang 1 ,
  • Yanhui Liang 2 ,
  • Ting Lan 2 ,
  • Tianjie Li 3 ,
  • Tao Tan 4 ,
  • Jiangyun Peng 2 ,
  • Quanjun Zhang 2 ,
  • Geng An 1 ,
  • Yali Liu 1 ,
  • Qian Yu 1 ,
  • Zhenglai Ma 1 ,
  • Ying Lian 3 ,
  • Boon Seng Soh 1,5,6 ,
  • Qingfeng Chen 1,5 ,
  • Ping Liu 3 ,
  • Yaoyong Chen 1 ,
  • Xiaofang Sun 1 ,
  • Rong Li 3 ,
  • Xiumei Zhen 3 ,
  • Ping Liu 3 ,
  • Yang Yu , 3 ,
  • Xiaoping Li , 2 ,
  • Yong Fan , 1
Expand
  • 1. Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
  • 2. Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
  • 3. Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
  • 4. Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
  • 5. Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
  • 6. Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore

Received date: 08 Sep 2017

Accepted date: 13 Nov 2017

Published date: 25 Mar 2018

Copyright

2018 The Author(s) 2018. This article is an open access publication

Abstract

Mitochondrial diseases are maternally inherited heterogeneous disorders that are primarily caused by mitochondrial DNA (mtDNA) mutations. Depending on the ratio of mutant to wild-type mtDNA, known as heteroplasmy, mitochondrial defects can result in a wide spectrum of clinical manifestations. Mitochondria-targeted endonucleases provide an alternative avenue for treating mitochondrial disorders via targeted destruction of the mutant mtDNA and induction of heteroplasmic shifting. Here, we generated mitochondrial disease patient-specific induced pluripotent stem cells (MiPSCs) that harbored a high proportion of m.3243A>G mtDNA mutations and caused mitochondrial encephalomyopathy and stroke-like episodes (MELAS). We engineered mitochondrial-targeted transcription activator-like effector nucleases (mitoTALENs) and successfully eliminated the m.3243A>G mutation in MiPSCs. Off-target mutagenesis was not detected in the targeted MiPSC clones. Utilizing a dual fluorescence iPSC reporter cell line expressing a 3243G mutant mtDNA sequence in the nuclear genome, mitoTALENs displayed a significantly limited ability to target the nuclear genome compared with nuclear-localized TALENs. Moreover, genetically rescued MiPSCs displayed normal mitochondrial respiration and energy production. Moreover, neuronal progenitor cells differentiated from the rescued MiPSCs also demonstrated normal metabolic profiles. Furthermore, we successfully achieved reduction in the human m.3243A>G mtDNA mutation in porcine oocytes via injection of mitoTALEN mRNA. Our study shows the great potential for using mitoTALENs for specific targeting of mutant mtDNA both in iPSCs and mammalian oocytes, which not only provides a new avenue for studying mitochondrial biology and disease but also suggests a potential therapeutic approach for the treatment of mitochondrial disease, as well as the prevention of germline transmission of mutant mtDNA.

Key words: mitochondria; iPSCs; TALEN; MELAS

Cite this article

Yi Yang , Han Wu , Xiangjin Kang , Yanhui Liang , Ting Lan , Tianjie Li , Tao Tan , Jiangyun Peng , Quanjun Zhang , Geng An , Yali Liu , Qian Yu , Zhenglai Ma , Ying Lian , Boon Seng Soh , Qingfeng Chen , Ping Liu , Yaoyong Chen , Xiaofang Sun , Rong Li , Xiumei Zhen , Ping Liu , Yang Yu , Xiaoping Li , Yong Fan . Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs[J]. Protein & Cell, 2018 , 9(3) : 283 -297 . DOI: 10.1007/s13238-017-0499-y

1
Alexeyev MF, Venediktova N, Pastukh V, Shokolenko I, Bonilla G, Wilson GL (2008) Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 15(7):516–523

DOI

2
Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

DOI

3
Bacman SR, Williams SL, Garcia S, Moraes CT (2010) Organspecific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 17(6):713–720

DOI

4
Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patientderived cells by mitoTALENs. Nat Med 19(9):1111–1113

DOI

5
Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

DOI

6
Brown DT, Herbert M, Lamb VK, Chinnery PF, Taylor RW, Lightowlers RN, Craven L, Cree L, Gardner JL, Turnbull DM (2006) Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet 368(9529):87–89

DOI

7
Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

DOI

8
Farrar GJ, Chadderton N, Kenna PF, Millington-Ward S (2013) Mitochondrial disorders: aetiologies, models systems, and candidate therapies. Trends Genet 29(8):488–497

DOI

9
Folmes CD, Martinez-Fernandez A, Perales-Clemente E, Li X, McDonald A, Oglesbee D, Hrstka SC, Perez-Terzic C, Terzic A, Nelson TJ (2013) Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells 31(7):1298–1308

DOI

10
Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348(6302):651–653

DOI

11
Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT (2006) Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod 3:2

DOI

12
Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, Cohen BH (2007) Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 120(6):1326–1333

DOI

13
Hamalainen RH, Manninen T, Koivumaki H, Kislin M, Otonkoski T, Suomalainen A (2013) Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci USA 110(38):E3622–E3630

DOI

14
Hatakeyama H, Goto Y (2016) Concise review: heteroplasmic mitochondrial DNA mutations and mitochondrial diseases: toward iPSC-Based disease modeling, drug discovery, and regenerative therapeutics. Stem Cells 34(4):801–808

DOI

15
Ingman M, Kaessmann H, Paabo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408(6813):708–713

DOI

16
Jo A, Ham S, Lee GH, Lee YI, Kim S, Lee YS, Shin JH, Lee Y (2015) Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int 2015:305716

DOI

17
Kodaira M, Hatakeyama H, Yuasa S, Seki T, Egashira T, Tohyama S, Kuroda Y, Tanaka A, Okata S, Hashimoto H (2015) Impaired respiratory function in MELAS-induced pluripotent stem cells with high heteroplasmy levels. FEBS Open Bio 5:219–225

DOI

18
Li M, Zhong Z, Zhu J, Xiang D, Dai N, Cao X, Qing Y, Yang Z, Xie J, Li Z (2010) Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem 285(20):14871–14881

DOI

19
Lionaki E, Gkikas I, Tavernarakis N (2016) Differential protein distribution between the nucleus and mitochondria: implications in aging. Front Genet 7:162

DOI

20
Ma H, Folmes CD, Wu J, Morey R, Mora-Castilla S, Ocampo A, Ma L, Poulton J, Wang X, Ahmed R (2015) Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524 (7564):234–238

DOI

21
Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 103 (52):19689–19694

DOI

22
Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G (2017) Selective mitochondrial DNA degradation following double-strand breaks. PLoS ONE 12(4):e0176795

DOI

23
Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, Sugawara A, Okamura D, Tsunekawa Y, Wu J (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161(3):459–469

DOI

24
Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, Mayer GD, Greenamyre JT, Meyer JN (2015) PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol 1241:23–38

DOI

25
Russell O, Turnbull D (2014) Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp Cell Res 325(1):38–43

DOI

26
Smith AJ, Bainbridge JW, Ali RR (2012) Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 19(2):154–161

DOI

27
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

DOI

28
Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402

DOI

29
Vogel G (2014) Assisted reproduction. FDA considers trials of ‘threeparent embryos’. Science 343(6173):827–828

DOI

30
Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123(4):1405–1412

DOI

31
Wang T, Sha H, Ji D, Zhang HL, Chen D, Cao Y, Zhu J (2014) Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell 157(7):1591–1604

DOI

32
Wu K, Chen T, Huang S, Zhong C, Yan J, Zhang X, Li J, Gao Y, Zhao H, Chen ZJ (2017) Mitochondrial replacement by pre-pronuclear transfer in human embryos. Cell Res 27(6):834–837

DOI

33
Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G, Paull D, Zimmer M, Pagett S, Prosser RW, Sauer MV (2016) Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18(6):749–754

DOI

34
Zhang J, Guo J, Fang W, Jun Q, Shi K (2015) Clinical features of MELAS and its relation with A3243G gene point mutation. Int J Clin Exp Pathol 8(10):13411–13415

Outlines

/