The lipid droplet: A conserved cellular organelle
Received date: 10 Aug 2017
Accepted date: 23 Aug 2017
Published date: 30 Nov 2017
Copyright
The lipid droplet (LD) is a unique multi-functional organelle that contains a neutral lipid core covered with a phospholipid monolayer membrane. The LDs have been found in almost all organisms from bacteria to humans with similar shape. Several conserved functions of LDs have been revealed by recent studies, including lipid metabolism and trafficking, as well as nucleic acid binding and protection. We summarized these findings and proposed a hypothesis that the LD is a conserved organelle.
Congyan Zhang , Pingsheng Liu . The lipid droplet: A conserved cellular organelle[J]. Protein & Cell, 2017 , 8(11) : 796 -800 . DOI: 10.1007/s13238-017-0467-6
1 |
AlvarezHM, SteinbuchelA (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol60:367–376
|
2 |
BarbosaAD, SiniossoglouS (2017) Function of lipid dropletorganelle interactions in lipid homeostasis. Biochimica et Biophysica Acta.
|
3 |
BartzR, ZehmerJK, ZhuM, ChenY, SerreroG, ZhaoY, LiuP (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res6:3256–3265
|
4 |
BobikTA, LehmanBP, YeatesTO (2015) Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol98:193–207
|
5 |
CaoH, GerholdK, MayersJR, WiestMM, WatkinsSM, HotamisligilGS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell134:933–944
|
6 |
CermelliS, GuoY, GrossSP, WelteMA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol16:1783–1795
|
7 |
ChenY, DingYF, YangL, YuJH, LiuGM, WangXM, ZhangSY, YuD, SongL, ZhangHX, ZhangCY, HuoLH, HuoCX, WangY, DuYL, ZhangHN, ZhangP, NaHM, XuSM, ZhuYX, XieZS, HeT, ZhangY, WangGL, FanZH, YangFQ, LiuHL, WangXW, ZhangXG, ZhangMQ, LiYD, SteinbuchelA, FujimotoT, CichelloS, YuJ, LiuPS (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res42:1052–1064
|
8 |
ChitrajuC, TrotzmullerM, HartlerJ, WolinskiH, ThallingerGG, LassA, ZechnerR, ZimmermannR, KofelerHC, SpenerF (2012) Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res53:2141–2152
|
9 |
ChughtaiAA, KassakF, KostrouchovaM, NovotnyJP, KrauseMW, SaudekV, KostrouchZ, KostrouchovaM (2015) Perilipin-related protein regulates lipid metabolism in C. elegans. PeerJ3:e1213
|
10 |
CohenJC, HortonJD, HobbsHH (2011) Human fatty liver disease: old questions and new insights. Science332:1519–1523
|
11 |
CornejoE, AbreuN, KomeiliA (2014) Compartmentalization and organelle formation in bacteria. Curr Opin Cell Biol26:132–138
|
12 |
DingY, YangL, ZhangS, WangY, DuY, PuJ, PengG, ChenY, ZhangH, YuJ, HangH, WuP, YangF, YangH, SteinbuchelA, LiuP (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res53:399–411
|
13 |
DvorakAM (2005) Mast cell secretory granules and lipid bodies contain the necessary machinery important for the in situ synthesis of proteins. Chem Immunol Allergy85:252–315
|
14 |
DvorakAM, MorganES, WellerPF (2003) RNA is closely associated with human mast cell lipid bodies. Histol Histopathol18:943–968
|
15 |
EdwardsMR, BernsDS, GhiorseWC, HoltSC (1968) Ultrastructure of the thermophilic blue-green alga, synechococcus lividus copeland(1). J Phycol4:283–298
|
16 |
FareseRV, WaltherTC (2009) Lipid droplets finally get a little R-E-SP-E-C-T. Cell139:855–860
|
17 |
FichesGN, EyreNS, AloiaAL, Van Der HoekK, Betz-StableinB, LucianiF, ChopraA, BeardMR (2016) HCV RNA traffic and association with NS5A in living cells. Virology493:60–74
|
18 |
GentzschJ, BrohmC, SteinmannE, FrieslandM, MenzelN, VieyresG, PerinPM, FrentzenA, KaderaliL, PietschmannT (2013) Hepatitis C virus p7 is critical for capsid assembly and envelopment. PLoS Pathogens9:e1003355
|
19 |
HanischJ, WaltermannM, RobenekH, SteinbuchelA (2006) Eukaryotic lipid body proteins in oleogenous actinomycetes and their targeting to intracellular triacylglycerol inclusions: Impact on models of lipid body biogenesis. Appl Environ Microbiol72:6743–6750
|
20 |
KimmelAR, BrasaemleDL, McAndrews-HillM, SztalrydC, LondosC (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res51:468–471
|
21 |
LayerenzaJP, GonzalezP, Garcia de BravoMM, PoloMP, SistiMS, Ves-LosadaA (1831) Nuclear lipid droplets: a novel nuclear domain. Biochem Biophys Acta2013:327–340
|
22 |
LiZ, ThielK, ThulPJ, BellerM, KuhnleinRP, WelteMA (2012) Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol22:2104–2113
|
23 |
LiZ, JohnsonMR, KeZ, ChenL, WelteMA (2014) Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development. Curr Biol24:1485–1491
|
24 |
LiL, WalshRM, WaghV, JamesMF, BeauchampRL, ChangYS, GusellaJF, HochedlingerK, RameshV (2015) Mediator subunit Med28 is essential for mouse peri-implantation development and pluripotency. PLoS ONE10:e0140192
|
25 |
LiuP, YingY, ZhaoY, MundyDI, ZhuM, AndersonRG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem279:3787–3792
|
26 |
LiuZ, LiX, GeQ, DingM, HuangX (2014) A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J Genet Genomics41:305–313
|
27 |
LiuL, ZhangK, SandovalH, YamamotoS, JaiswalM, SanzE, LiZ, HuiJ, GrahamBH, QuintanaA, BellenHJ (2015) Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell160:177–190
|
28 |
MartinS, PartonRG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol7:373–378
|
29 |
MiyanariY, AtsuzawaK, UsudaN, WatashiK, HishikiT, ZayasM, BartenschlagerR, WakitaT, HijikataM, ShimotohnoK (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol9:1089–1097
|
30 |
MurphyDJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res40:325–438
|
31 |
MurphyDJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma249:541–585
|
32 |
MurphyDJ, VanceJ (1999) Mechanisms of lipid-body formation. Trends Biochem Sci24:109–115
|
33 |
NaH, ZhangP, ChenY, ZhuX, LiuY, LiuY, XieK, XuN, YangF, YuY, CichelloS, MakHY, WangMC, ZhangH, LiuP (2015) Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. Biochem Biophys Acta1853:2481–2491
|
34 |
OhsakiY, KawaiT, YoshikawaY, ChengJ, JokitaloE, FujimotoT (2016) PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol212:29–38
|
35 |
O’MahonyF, WroblewskiK, O’ByrneSM, JiangH, ClerkinK, BenhammouJ, BlanerWS, BeavenSW (2015) Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein. Hepatology62:615–626
|
36 |
PeramunaA, SummersML (2014) Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme. Arch Microbiol196:881–890
|
37 |
PloeghHL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature448:435–438
|
38 |
RoweER, MimmackML, BarbosaAD, HaiderA, IsaacI, OuberaiMM, ThiamAR, PatelS, SaudekV, SiniossoglouS, SavageDB (2016) Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1-3. J Biol Chem291:6664–6678
|
39 |
SatoS, FukasawaM, YamakawaY, NatsumeT, SuzukiT, ShojiI, AizakiH, MiyamuraT, NishijimaM (2006) Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem139:921–930
|
40 |
ShiST, PolyakSJ, TuH, TaylorDR, GretchDR, LaiMMC (2002) Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology292:198–210
|
41 |
UenoM, ShenWJ, PatelS, GreenbergAS, AzharS, KraemerFB (2012) Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res54:734–743
|
42 |
Van de MeeneAM, Hohmann-MarriottMF, VermaasWF, RobersonRW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol184:259–270
|
43 |
WaltermannM, SteinbuchelA (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol187:3607–3619
|
44 |
WaltermannM, HinzA, RobenekH, TroyerD, ReicheltR, MalkusU, GallaHJ, KalscheuerR, StovekenT, von LandenbergP, SteinbuchelA (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol55:750–763
|
45 |
WanHC, MeloRC, JinZ, DvorakAM, WellerPF (2007) Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J21:167–178
|
46 |
WangL, WangY, LiangY, LiJ, LiuY, ZhangJ, ZhangA, FuJ, JiangG (2013) Specific accumulation of lipid droplets in hepatocyte nuclei of PFOA-exposed BALB/c mice. Sci Rep3:2174
|
47 |
WangY, ZhouXM, MaX, DuY, ZhengL, LiuP (2016) Construction of nano-droplet/adiposome and artificial lipid droplets. ACS Nano10:3312–3322
|
48 |
WelteMA (2015) Expanding roles for lipid droplets. Curr Biol25: R470–481
|
49 |
WolkCP (1973) Physiology and cytological chemistry blue-green algae. Bacteriol Rev37:32–101
|
50 |
YangL, DingYF, ChenY, ZhangSY, HuoCX, WangY, YuJH, ZhangP, NaHM, ZhangHN, MaYB, LiuPS (2012) The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res53:1245–1253
|
51 |
ZhangP, NaH, LiuZ, ZhangS, XueP, ChenY, PuJ, PengG, HuangX, YangF, XieZ, XuT, XuP, OuG, ZhangSO, LiuP (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics11:317–328
|
52 |
ZhangC, YangL, DingY, WangY, LanL, MaQ, ChiX, WeiP, ZhaoY, SteinbuchelA, ZhangH, LiuP (2017) Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun8:15979
|
/
〈 | 〉 |