RESEARCH ARTICLE

Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2

  • Peipei Liu ,
  • Jinliang Huang ,
  • Qian Zheng ,
  • Leiming Xie ,
  • Xinping Lu ,
  • Jie Jin ,
  • Geng Wang
Expand
  • MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 30 Jun 2017

Accepted date: 06 Jul 2017

Published date: 06 Nov 2017

Copyright

2017 The Author(s) 2017. This article is an open access publication

Abstract

Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMSlocalized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.

Cite this article

Peipei Liu , Jinliang Huang , Qian Zheng , Leiming Xie , Xinping Lu , Jie Jin , Geng Wang . Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2[J]. Protein & Cell, 2017 , 8(10) : 735 -749 . DOI: 10.1007/s13238-017-0448-9

1
AcquatiF, BertilaccioS, GrimaldiA, MontiL, CinquettiR, BonettiP, LualdiM, VidalinoL, FabbriM, SaccoMG (2011) Microenvironmental control of malignancy exerted by RNASET2, a widely conserved extracellular RNase.Proc Natl Acad Sci USA108:1104–1109

DOI

2
AlfonzoJD, ThiemannOH, SimpsonL (1998) Purification and characterization of MAR1. A mitochondrial associated ribonuclease from Leishmania tarentolae.J Biol Chem273:30003–30011

DOI

3
AndersonS, BankierAT, BarrellBG, de BruijnMH, CoulsonAR, DrouinJ, EperonIC, NierlichDP, RoeBA, SangerF (1981) Sequence and organization of the human mitochondrial genome.Nature290:457–465

DOI

4
Bienertova-VaskuJ, SanaJ, SlabyO (2013) The role of microRNAs in mitochondria in cancer.Cancer Lett336:1–7

DOI

5
BonawitzND, RodehefferMS, ShadelGS (2006) Defective mitochondrial gene expression results in reactive oxygen speciesmediated inhibition of respiration and reduction of yeast life span.Mol Cell Biol26:4818–4829

DOI

6
BorowskiLS, DziembowskiA, HejnowiczMS, StepienPP, SzczesnyRJ (2013) Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci.Nucleic Acids Res41:1223–1240

DOI

7
BruniF, GramegnaP, OliveiraJM, LightowlersRN, Chrzanowska-LightowlersZM (2013) REXO2 is an oligoribonuclease active in human mitochondria.PLoS ONE8:e64670

DOI

8
ChangDD, ClaytonDA (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate.Cell56:131–139

DOI

9
ChenHW, RaineyRN, BalatoniCE, DawsonDW, TrokeJJ, WasiakS, HongJS, McBrideHM, KoehlerCM, TeitellMA (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis.Mole Cell Biol26:8475–8487

DOI

10
ChujoT, OhiraT, SakaguchiY, GoshimaN, NomuraN, NagaoA, SuzukiT (2012) LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria.Nucleic Acids Res40:8033–8047

DOI

11
ClementeP, PajakA, LaineI, WibomR,WedellA,FreyerC,WredenbergA (2015) SUV3 helicase is required for correct processing of mitochondrial transcripts.Nucleic Acids Res43:7398–7413

DOI

12
CoteJ, Ruiz-CarrilloA (1993) Primers for mitochondrial DNA replication generated by endonuclease G.Science261:765–769

DOI

13
DaoudR, ForgetL, LangBF (2012) Yeast mitochondrial RNase P, RNase Z and the RNA degradosome are part of a stable supercomplex.Nucleic Acids Res40:1728–1736

DOI

14
DuarteFV, PalmeiraCM, RoloAP (2015) The emerging role of MitomiRs in the pathophysiology of human disease.Adv Exp Med Biol888:123–154

DOI

15
DucheneAM, PujolC, Marechal-DrouardL (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria.Curr Genet55:1–18

DOI

16
DziembowskiA, MalewiczM, MinczukM, GolikP, DmochowskaA, StepienPP (1998) The yeast nuclear gene DSS1, which codes for a putative RNase II, is necessary for the function of the mitochondrial degradosome in processing and turnover of RNA.Mol Gen Genet260:108–114

DOI

17
HallbergBM, LarssonNG (2014) Making proteins in the powerhouse.Cell Metab20:226–240

DOI

18
HanS, UdeshiND, DeerinckTJ, SvinkinaT, EllismanMH, CarrSA, TingAY (2017) Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells.Cell Chem Biol24:404–414

DOI

19
HennekeM, DiekmannS, OhlenbuschA, KaiserJ, EngelbrechtV, KohlschutterA, KratznerR, Madruga-GarridoM, MayerM, OpitzL (2009) RNASET2-deficient cystic leukoencephalopathy resembles congenital cytomegalovirus brain infection.Nat Genet41:773–775

DOI

20
IrieM (1999) Structure-function relationships of acid ribonucleases: lysosomal, vacuolar, and periplasmic enzymes.Pharmacol Ther81:77–89

DOI

21
JanCH, WilliamsCC, WeissmanJS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling.Science346:1257521

DOI

22
KhidrL,WuG,DavilaA, ProcaccioV, WallaceD, LeeWH (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells.J Biol Chem283:27064–27073

DOI

23
KimDI, RouxKJ (2016) Filling the void: proximity-based labeling of proteins in living cells.Trends Cell Biol26:804–817

DOI

24
LevyS, AllerstonCK, LiveanuV, HabibMR, GileadiO, SchusterG (2016) Identification of LACTB2, a metallo-beta-lactamase protein, as a human mitochondrial endoribonuclease.Nucleic Acids Res44:1813–1832

DOI

25
LuhtalaN, ParkerR (2010) T2 Family ribonucleases: ancient enzymes with diverse roles.Trends Biochem Sci35:253–259

DOI

26
MaleckiM, StepienPP, GolikP (2010) Assays of the helicase, ATPase, and exoribonuclease activities of the yeast mitochondrial degradosome.Methods Mol Biol587:339–358

DOI

27
MargossianSP, LiH, ZassenhausHP, ButowRA (1996) The DExH box protein Suv3p is a component of a yeast mitochondrial 3’-to-5’ exoribonuclease that suppresses group I intron toxicity.Cell84:199–209

DOI

28
MercerTR, NephS, DingerME, CrawfordJ, SmithMA, ShearwoodAM, HaugenE, BrackenCP, RackhamO, StamatoyannopoulosJA (2011) The human mitochondrial transcriptome.Cell146:645–658

DOI

29
MiczakA, KaberdinVR, WeiCL, Lin-ChaoS (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex.Proc Natl Acad Sci USA93:3865–3869

DOI

30
MishraP, ChanDC (2016) Metabolic regulation of mitochondrial dynamics.J Cell Biol212:379–387

DOI

31
Nesiel-NuttmanL, DoronS, SchwartzB, ShoseyovO (2015) Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization.Oncoscience2:31–43

DOI

32
NohJH, KimKM, AbdelmohsenK, YoonJH, PandaAC, MunkR, KimJ, CurtisJ, MoadCA, WohlerCM (2016) HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP.Genes Dev30:1224–1239

33
OhsatoT, IshiharaN, MutaT, UmedaS, IkedaS, MiharaK, HamasakiN, KangD (2002) Mammalian mitochondrial endonuclease G. Digestion of R-loops and localization in intermembrane space.Eur J Biochem FEBS269:5765–5770

DOI

34
PortnoyV, PalnizkyG, Yehudai-ResheffS, GlaserF, SchusterG (2008) Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts.RNA14:297–309

DOI

35
RouxKJ, KimDI, RaidaM, BurkeB (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells.J Cell Biol196:801–810

DOI

36
RubioMA, RinehartJJ, KrettB, Duvezin-CaubetS, ReichertAS, SollD, AlfonzoJD (2008) Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import.Proc Natl Acad Sci USA105:9186–9191

DOI

37
SanchezMI, MercerTR, DaviesSM, ShearwoodAM, NygardKK, RichmanTR, MattickJS, RackhamO, FilipovskaA (2011) RNA processing in human mitochondria.Cell Cycle10:2904–2916

DOI

38
SarkarD, ParkES, EmdadL, RandolphA, ValerieK, FisherPB (2005) Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence.Mol Cell Biol25:7333–7343

DOI

39
SatoR, Arai-IchinoiN, KikuchiA, MatsuhashiT, Numata-UematsuY, UematsuM, FujiiY, MurayamaK, OhtakeA, AbeT (2017) Novel biallelic mutations in the PNPT1 gene encoding a mitochondrial-RNA-import protein PNPase cause delayed myelination.Clin Genet.

DOI

40
SchaferB, HansenM, LangBF (2005) Transcription and RNAprocessing in fission yeast mitochondria.RNA11:785–795

DOI

41
SimpsonAM, BakalaraN, SimpsonL (1992) A ribonuclease activity is activated by heparin or by digestion with proteinase K in mitochondrial extracts of Leishmania tarentolae.J Biol Chem267:6782–6788

42
SlomovicS, PortnoyV, Yehudai-ResheffS, BronshteinE, SchusterG (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases.Biochim et Biophys Acta1779:247–255

DOI

43
SlomovicS, SchusterG (2008) Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA.RNA14:310–323

DOI

44
SmirnovA, EntelisN, MartinRP, TarassovI (2011) Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18.Genes Dev25:1289–1305

DOI

45
SzczesnyRJ, BorowskiLS, MaleckiM, WojcikMA, StepienPP, GolikP (2012) RNA degradation in yeast and human mitochondria.Biochim et Biophys Acta1819:1027–1034

DOI

46
SzczesnyRJ, WojcikMA, BorowskiLS, SzewczykMJ, SkrokMM, GolikP, StepienPP (2013) Yeast and human mitochondrial helicases.Biochim et Biophys Acta1829:842–853

DOI

47
VedrenneV, GowherA, De LonlayP, NitschkeP, SerreV, BoddaertN, AltuzarraC, Mager-HeckelAM, ChretienF, EntelisN (2012) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet91:912–918

DOI

48
von AmelnS, WangG, BoulouizR, RutherfordMA, SmithGM, LiY, PogodaHM, NurnbergG, StillerB, VolkAE (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss.Am J Hum Genet91:919–927

DOI

49
WangG, ChenHW, OktayY, ZhangJ, AllenEL, SmithGM, FanKC, HongJS, FrenchSW, McCafferyJM (2010) PNPASE regulates RNA import into mitochondria.Cell142:456–467

DOI

50
WilliamsCC, JanCH, WeissmanJS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling.Science346:748–751

DOI

51
ZhangX, ZuoX, YangB, LiZ, XueY, ZhouY, HuangJ, ZhaoX, ZhouJ, YanY (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation.Cell158:607–619

DOI

52
ZhouQ, LiH, LiH, NakagawaA, LinJL, LeeES, HarryBL, Skeen-GaarRR, SuehiroY, WilliamD (2016) Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.Science353:394–399

DOI

Outlines

/