REVIEW

Potential coordination role between O-GlcNAcylation and epigenetics

  • Donglu Wu 1 ,
  • Yong Cai 1,2,3 ,
  • Jingji Jin , 1,2,3
Expand
  • 1. School of Life Sciences, Jilin University, Changchun 130012, China
  • 2. National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
  • 3. Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China

Received date: 07 Mar 2017

Accepted date: 20 Apr 2017

Published date: 06 Nov 2017

Copyright

2017 The Author(s) 2017. This article is an open access publication

Abstract

Dynamic changes of the post-translational O-GlcNAc modification (O-GlcNAcylation) are controlled by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the glycoside hydrolase O-GlcNAcase (OGA) in cells. O-GlcNAcylation often occurs on serine (Ser) and threonine (Thr) residues of the specific substrate proteins via the addition of O-GlcNAc group by OGT. It has been known that O-GlcNAcylation is not only involved in many fundamental cellular processes, but also plays an important role in cancer development through various mechanisms. Recently, accumulating data reveal that O-GlcNAcylation at histones or non-histone proteins can lead to the start of the subsequent biological processes, suggesting that O-GlcNAcylation as ‘protein code’ or ‘histone code’ may provide recognition platforms or executive instructions for subsequent recruitment of proteins to carry out the specific functions. In this review, we summarize the interaction of O-GlcNAcylation and epigenetic changes, introduce recent research findings that link crosstalk between OGlcNAcylation and epigenetic changes, and speculate on the potential coordination role of O-GlcNAcylation with epigenetic changes in intracellular biological processes.

Cite this article

Donglu Wu , Yong Cai , Jingji Jin . Potential coordination role between O-GlcNAcylation and epigenetics[J]. Protein & Cell, 2017 , 8(10) : 713 -723 . DOI: 10.1007/s13238-017-0416-4

1
BannisterAJ, KouzaridesT (2011) Regulation of chromatin by histone modifications.Cell Res21:381–395

DOI

2
BondMR, HanoverJA (2015) A little sugar goes a long way: the cell biology of O-GlcNAc.J Cell Biol208:869–880

DOI

3
BullenJW, BalsbaughJL, ChandaD, ShabanowitzJ, HuntDF, NeumannD, HartGW (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).J Biol Chem289:10592–10606

DOI

4
BurénS, GomesAL, TeijeiroA, FawalMA, YilmazM, TummalaKS, PerezM, Rodriguez-JustoM, Campos-OlivasR, MegíasD, DjouderN (2016) Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms.Cancer Cell30:290–307

DOI

5
ButkinareeC, CheungWD, ParkS, ParkK, BarberM, HartGW(2008) Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis.J Biol Chem283:23557–23566

DOI

6
CaiY, JinJ, SwansonSK, ColeMD, ChoiSH, FlorensL, WashburnMP, ConawayJW, ConawayRC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex.J Biol Chem285:4268–4672

DOI

7
CaldwellSA, JacksonSR, ShahriariKS, LynchTP, SethiG, WalkerS, VossellerK, ReginatiMJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1.Oncogene29:2831–2842

DOI

8
CapotostiF, GuernierS, LammersF, WaridelP, CaiY, JinJ, ConawayJW, ConawayRC, HerrW (2011) O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1.Cell144:376–388

DOI

9
CasseyPJ (1995) Protein lipidation in cell signaling.Science268:221–225

DOI

10
CharoensuksaiP, KuhnP, WangL, ShererN, XuW (2015) O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity.Biochem. J.466:587–599

DOI

11
ChenQ, YuX (2016) OGT restrains the expansion of DNA damage signaling.Nucleic Acids Res44:9266–9278

DOI

12
ChenQ, ChenY, BianC, FujikiR, YuX(2013) TET2 promotes histone O-GlcNAcylation during gene transcription.Nature493:561–564

DOI

13
ChoiHS, ChoiBY, ChoYY, MizunoH, KangBS, BodeAM, DongZ (2005) Phosphorylation of Histone H3 at Serine 10 is Indispensable for Neoplastic Cell Transformation.Cancer Res65:5818–5827

DOI

14
ChouTY, HartGW, DangCV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas.J Biol Chem270:18961–18965

DOI

15
ChuCS, LoPW, YehYH, HsuPH, PengSH, TengYC, KangML, WongCH, JuanLJ (2014) O-GlcNAcylation regulates EZH2 protein stability and function.Proc Natl Acad Sci USA111:1355–1360

DOI

16
ComtesseN, MaldenerE, MeeseE (2001) Identification of a nuclear variant of MGEA5: a cytoplasmic hyaluronidase and a beta-Nacetylglucosaminidase.Biochem Biophys Res Commun283:634–640

DOI

17
CopelandRJ, BullenJW, HartGW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity.Am J Physiol Endocrinol Metab295:E17–E28

DOI

18
de QueirozRM, MadanR, ChienJ, DiasWB, SlawsonC (2016) Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.J Biol Chem291:18897–18914

DOI

19
DelhommeauF, DupontS, Della ValleV, JamesC, TrannoyS, MasséA, KosmiderO, Le CouedicJP, RobertF, AlberdiA, LécluseY, PloI, DreyfusFJ, MarzacC, CasasevallN, LacombeC, RomanaSP, DessenP, SoulierJ, ViquiéF, FontenayM, VainchenkerW, BernardOA (2009) Mutation in TET2 in myeloid cancers.N Engl J Med360:2289–2301

DOI

20
DeplusR, DelatteB, SchwinnMK, DefranceM, MéndezJ, MurphyN, DawsonMA, VolkmarM, PutmansP, CalonneE, ShihAH, LevineRL, BernardO, MercherT, SolaryE, UrhM, DanielsDL, FuksF (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGTand SET1/COMPASS.EMBO J32:645–655

DOI

21
DingX, JiangW, ZhouP, LiuL, WanX, YuanX, WangX, ChenM, ChenJ, YangJ, KongC, LiB, PengC, WongCC, HouF, ZhangY (2015) Mixed Lineage Leukemia 5 (MLL5) Protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin specific protease 7 (USP7).PLoS ONE10: e0145023

DOI

22
FerrerCM, LuTY, BacigalupaZA, KatsetosCD, SinclairDA, ReginatoMJ (2017) O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway.Oncogene36:559–569

DOI

23
FongJJ, NguyenBL, BridgerR, MedranoEE, WellsL, PanS, SifersRN (2005) Beta-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3.J Biol Chem287:12195–12203

DOI

24
FuX, JinL, WangX, LuoA, HuJ, ZhengX, TsarkWM, RiggsAD, KuHT, HuangW (2013) MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation.Proc Natl Acad Sci USA110:17892–17897

DOI

25
FujikiR, HashibaW, SekineH, YokoyamaA, ChikanishiT, ItoS, ImaiY, KimJ, HeHH, IgarashiK, KannoJ, OhtakeF, KitagawaH, RoederRG, BrownM, KatoS (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination.Nature480:557–560

DOI

26
GalloM, CoutinhoFJ, VannerRJ, GaydenT, MackSC, MurisonA, RemkeM, LiR, TakayamaN, DesaiK, LeeL, LanX, ParkNI, Barsyte-LovejoyD, SmilD, SturmD, KushidaMM, HeadR, CusimanoMD, BernsteinM, ClarkeID, DickJE, PfisterSM, RichJN, ArrowsmithCH, TaylorMD, JabadoN, Bazett-JonesDP, LupienM, DirksPB (2015) MLL5 orchestrates a cancer selfrenewal state by repressing the histone variant H3.3 and globally reorganizing chromatin.Cancer Cell28:715–729

DOI

27
GambettaMC, OktabaK, MüllerJ (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression.Science325:93–96

DOI

28
GaoY, WellsL, ComerFI, ParkerGJ, HartGW (2001a) Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain.J Biol Chem276:9838–9845

DOI

29
GaoY, WellsL, ComerFI, ParkerGJ, HartGW (2001b) Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain.J Biol Chem276:9838–9845

DOI

30
GerholdCB, GasserSM (2014) INO80 and SWR complexes: relating structure to function in chromatin remodeling.Trends Cell Biol24:619–631

DOI

31
GuY, MiW, GeY, LiuH, FanQ, HanC, YangJ, HanF, LuX, YuW (2010) GlcNAcylation plays an essential role in breast cancer metastasis.Cancer Res70:6344–6351

DOI

32
GuY, GaoJ, HanC, ZhangX, LiuH, MaL, SunX, YuW (2014) OGlcNAcylation is increased in prostate cancer tissues and enhances malignancy of prostate cancer cells.Mol. Med. Rep.10:897–904

DOI

33
HaC, LimK (2015) O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities.Biochem Biophys Res Commun467:341–347

DOI

34
HanoverJA, YuS, LubasWB, ShinSH, Ragano-CaracciolaM, KochranJ, LoveDC (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene.Arch Biochem Biophys409:287–297

DOI

35
HanoverJA, KrauseMW, LoveDC (2012) Post-translational modifications: bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation.Nat Rev Mol Cell Biol13:312–321

DOI

36
HardivilléS, HartGW (2012) Nutrient regulation of gene expression by O-GlcNAcylation of chromatin.Curr Opin Chem Biol33:88–94

DOI

37
HirosawaM, HayakawaK, YonedaC, AraiD, ShiotaH, SuzukiT, TanakaS, DohmaeN, ShiotaK (2016) Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity.Sci. Rep.6:31785

DOI

38
InghamPW (1984) A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila.Cell37:815–823

DOI

39
ItkonenHM, MinnerS, GuldvikIJ, SandmannMJ, TsourlakisMC, BergeV, SvindlandA, SchlommT, MillsIG (2013) O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.Cancer Res73:5277–5287

DOI

40
ItoS, ShenL, DaiQ, WuSC, CollinsLB, SwenbergJA, HeC, ZhangY (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Science333:1300–1303

DOI

41
ItoR, KatsuraS, ShimadaH, TsuchiyaH, HadaM, OkumuraT, SugawaraA, YokoyamaA (2014) TET3-OGT interaction increases the stability and the presence of OGT in chromatin.Genes Cells19:52–65

DOI

42
JinJ, CaiY, LiB, ConawayRC, WorkmanJL, ConawayJW, KuschT (2005) In and out: histone variant exchange in chromatin.Trends Biochem Sci30:680–687

DOI

43
JinekM, RehwinkelJ, LazarusBD, IzaurraldeE, HanoverJA, ContiE (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.Nat Struct Mol Biol11:1001–1007

DOI

44
KamigaitoT, OkaneyaT, KawakuboM, ShimojoH, NishizawaO, NakayamaJ (2014) Overexpression of O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients.Prostate Cancer Prostatic Dis17:18–22

DOI

45
KangKA, PiaoMJ, RyuYS, KangHK, ChangWY, KeumYS, HyunJW (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells.Oncotarget7:40594–40620

DOI

46
KatoS, IshiiT, KouzmenkoA (2015) Point mutations in an epigenetic factor lead to multiple types of bone tumors: role of H3.3 histone variant in bone development and disease.Bonekey. Rep.4:715

DOI

47
KreppelLK, HartGW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats.J Biol Chem274:32015–32022

DOI

48
KreppelLK, BlombergMA, HartGW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats.J Biol Chem272:9308–9315

DOI

49
KrzeslakA, FormaE, BernaciakM, RomanowiczH, BrysM (2012) Gene expression of O-GlcNAc cycling enzymes in human breast cancers.Clin Exp Med12:61–65

DOI

50
LangemeijerSM, KuiperRP, BerendsM, KnopsR, AslanyanMG, MassopM, Stevens-LindersE, van HoogenP, van KesselAG, RaymakersRA, KampingEJ, VerhoefGE, VerburghE, HagemeijerA, VandenbergheP, de WitteT, van der ReijdenBA, JansenJH (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes.Nat. Genet.41:838–842

DOI

51
LängstG, ManelyteL (2015) Chromatin remodelers: from function to dysfunction.Genes6:299–324

DOI

52
LazarusBD, LoveDC, HanoverJA (2006) Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates.Glycobiology16:415–421

DOI

53
LazarusMB, NamY, JiangJ, SlizP, WalkerS (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate.Nature469:564–567

DOI

54
LeeJS, ZhangZ (2016) O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence.Proc Natl Acad Sci USA113:E3213–E3220

DOI

55
LercherL, RajR, PatelNA, PriceJ, MohammedS, RobinsonCV, SchofieldCJ, DavisBG (2015) Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation.Nat. Commun.6:7978

DOI

56
LiuY, LiX, YuY, ShiJ, LiangZ, RunX, LiY, DaiCL, Grundke-IqbalI, IqbalK, LiuF, GongCX (2012) Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain.PLoS ONE7:43724

DOI

57
LorsbachRB, MooreJ, MathewS, RaimondiSC, MukatiraST, DowningJR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t (10;11) (q22;q23).Leukemia17:637–641

DOI

58
LoveDC, KochanJ, CatheyRL, ShinSH, HanoverJA (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase.J Cell Sci116:647–654

DOI

59
LubasWA, HanoverJA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity.J Biol Chem275:10983–10988

DOI

60
LynchTP, FerrerCM, JacksonSR, ShahriariKS, VossellerK, ReginatoMJ (2012) Critical role of O-linked beta-Nacetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.J Biol Chem287:11070–11081

DOI

61
MailleuxF, GélinasR, BeauloyeC, HormanS, BertrandL (2016) O-GlcNAcylation, enemy or ally during cardiac hypertrophy development?Biochim Biophys Acta1862:2232–2243

DOI

62
MarshallS, BacoteV, TraxingerRR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.J Biol Chem266:4706–4712

63
MazarsR, Gonzalez-de-PeredoA, CayrolC, LavigneAC, VogelJL, OrtegaN, LacroixC, GautierV, HuetG, RayA, MonsarratB, KristieTM, GirardJP (2010) The THAP-Zinc Finger Protein THAP1 Associates with Coactivator HCF-1 and O-GlcNAc Transferase, a link between DYT6 and DYT3 dystonias.J Biol Chem285:13364–13371

DOI

64
MiW, GuY, HanC, LiuH, FanQ, ZhangX, CongQ, YuW (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy.Biochim Biophys Acta1812:514–519

DOI

65
NakamuraK, KatoA, KobayashiJ, YanagiharaH, SakamotoS, OliveiraDV, ShimadaM, TauchiH, SuzukiH, TashiroS, ZouL, KomatsuK (2011) Regulation of homologous recombination by RNF20-dependent H2B ubiquitination.Mol Cell41:515–528

DOI

66
O’DonnellN, ZacharaNE, HartGW, MarthJD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability.Mol Cell Biol224:1680–1690

DOI

67
OnoR, TakiT, TaketaniT, TaniwakiM, KobayashiH, HayashiY (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23).Cancer Res62:4075–4080

68
PhoomakC, VaeteewoottacharnK, SawanyawisuthK, SeubwaiW, WongkhamC, SilsirivanitA, WongkhambS (2016) Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB.Sci. Rep.6:27853

DOI

69
QiaoZ, DangC, ZhouB, LiS, ZhangW, JiangJ, ZhangJ, KongR, MaY (2012) O-linked N-acetylglucosamine transferase (OGT) is overexpressed and promotes O-linked protein glycosylation in esophageal squamous cell carcinoma.J. Biomed Res26:268–273

DOI

70
RickettsMD, MarmorsteinR (2016) A molecular prospective for HIRA complex assembly and H3.3-specific histone chaperone.J Mol Biol. doi:10.1016/j.jmb.2016.11.010

DOI

71
RiuIH, ShinIS, DoSI (2008) Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli.Biochem Biophys Res Commun372:203–209

DOI

72
RonningenT, ShahA, OldenburgAR, VekterudK, DelbarreE, MoskaugJO, CollasP (2015) Prepatterning of differentiationdriven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B.Genome Res25:1825–1835

DOI

73
RuanHB, HanX, LiMD, SinghJP, QianK, AzarhoushS, ZhaoL, BennettAM, SamuelVT, WuJ, YatesJR, YangX (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability.Cell Metab16:226–237

DOI

74
SacomanJL, DagdaRY, Burnham-MarusichAR, DagdaRK, BerninsonePM (2017) Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function and survival in HeLa cells.J Biol Chem292:4499–4518

DOI

75
SakabeK, HartGW (2010) O-GlcNAc Transferase Regulates Mitotic Chromatin Dynamics.J Biol Chem285:34460–34468

DOI

76
SakabeK, WangZ, HartGW (2010) Beta-N-acetylglucosamine (OGlcNAc) is part of the histone code. Proc Natl Acad Sci USA107:19915–19920

DOI

77
SchurterBT, KohSS, ChenD, BunickGJ, HarpJM, HansonBL, Henschen-EdmanA, MackayDR, StallcupMR, AswadDW (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1.Biochemistry40:5747–5756

DOI

78
ScourzicL, MoulyE, BernardOA (2015) TET proteins and the control of cytosine demethylation in cancer.Genome Med. 7:9

DOI

79
SebastianS, SreenivasP, SambasivanR, CheedipudiS, KandallaP, PavlathGK, DhawanJ (2009) MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation.Proc Natl Acad Sci USA106:4719–4724

DOI

80
ShiFT, KimH, LuW, HeQ, LiuD, GoodellMA (2013) Teneleven transloca tion 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells.J Biol Chem288:20776–20784

DOI

81
ShinSH, LoveDC, HanoverJA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis.Amino Acids40:885–893

DOI

82
SlawsonC, LakshmananT, KnappS, HartGW (2008) A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin.Mol Biol Cell19:4130–4140

DOI

83
TefferiA, PardananiA, LimKH, Abdel-WahabO, LashoTL, PatelJ, GangatN, FinkeCM, SchwagerS, MullallyA, LiCY, HansonCA, MesaR, BernardO, DelhommeauF, VainchenkerW, GillilandDG, LevineRL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis.Leukemia23:905–911

DOI

84
TolemanC, PatersonAJ, WhisenhuntTR, KudlowJE (2004) Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities.J Biol Chem279:53665–53673

DOI

85
TrapannoneR, MariappaD, FerenbachAT, van AaltenDM (2016) Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins.Biochem. J.473:1693–1702

DOI

86
Van HooserA, GoodrichDW, AllisCD, BrinkleyBR, ManciniMA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation.J Cell Sci111:3497–3506

87
VellaP, ScelfoA, JammulaS, ChiacchieraF, WilliamsK, CuomoA, RobertoA, ChristensenJ, BonaldiT, HelinK, PasiniD (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.Mol Cell49:645–656

DOI

88
WellsL, HartGW (2003) O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar.FEBS Lett546:154–158

DOI

89
WilliamsK, ChristensenJ, PedersenMT, JohansenJV, CloosPA, RappsilberJ, HelinK (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.Nature473:343–348

DOI

90
WilliamsK, ChristensenJ, HelinK (2012) DNA methylation: TET proteins-guardians of CpG islands?EMBO Rep13:28–35

DOI

91
WuH, D’AlessioAC, ItoS, XiaK, WangZ, CuiK, ZhaoK, SunYE, ZhangY (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.Nature473:389–393

DOI

92
YangWH, KimJE, NamHW, JuJW, KimHS, KimYS, ChoJW (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability.Nat Cell Biol8:1074–1083

DOI

93
YildirimO, LiR, HungJH, ChenPB, DongX, EeLS, WengZ, RandoOJ, FazzioTG (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells.Cell147:1498–1510

DOI

94
ZhangS, RocheK, NasheuerHP, LowndesNF (2011) Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated.J Biol Chem286:37483–37495

DOI

95
ZhuQ, ZhouL, YangZ, LaiM, XieH, WuL, XingC, ZhangF, ZhengS (2012) O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation.Med Oncol29:985–993

DOI

96
ZhuX, LiD, ZhangZ, ZhuW, LiW, ZhaoJ, XingX, HeZ, WangS, WangF, MaL, BaiQ, ZengX, LiJ, GaoC, XiaoY, WangQ, ChenL, ChenW (2016a) Persistent phosphorylation at specific H3 serine residues involved in chemical carcinogen-induced cell transformation.Carcinog, Mol. doi:10.1002/mc.22605

DOI

97
ZhuG, TaoT, ZhangD, LiuX, QiuH, HanL, XuZ, XiaoY, ChengC, ShenA (2016b) O-GlcNAcylation of histone deacetylase-1 in hepatocellular carcinoma promotes cancer progression.Glycobiology26:820–833

DOI

98
ZippoA, SerafiniR, RocchigianiM, PennacchiniS, KrepelovaA, OlivieroS (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation.Cell138:1122–1136

DOI

Outlines

/