REVIEW

Increasing the safety and efficacy of chimeric antigen receptor T cell therapy

  • Hua Li 1,2 ,
  • Yangbing Zhao , 1
Expand
  • 1. Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
  • 2. Cancer Center, Chengdu Military General Hospital, Chengdu 610083, China

Received date: 16 Feb 2017

Accepted date: 07 Apr 2017

Published date: 23 Aug 2017

Copyright

2017 The Author(s) 2017. This article is an open access publication

Abstract

Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumorassociated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

Cite this article

Hua Li , Yangbing Zhao . Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein & Cell, 2017 , 8(8) : 573 -589 . DOI: 10.1007/s13238-017-0411-9

1
AhmedN, BrawleyVS, HegdeM, RobertsonC, GhaziA, GerkenC, LiuE, DakhovaO, AshooriA, CorderA (2015) Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma.J Clin Oncol33:1688–1696

DOI

2
Alvarez-RuedaN, DesselleA, CochonneauD, ChaumetteT, ClemenceauB, LeprieurS, BougrasG, SupiotS, MussiniJM, BarbetJ (2011) A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity.PloS one6:e25220

DOI

3
AnkriC, ShamalovK, Horovitz-FriedM, MauerS, CohenCJ (2013) Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity.J Immunol191:4121–4129

DOI

4
BarrettDM, TeacheyDT, GruppSA (2014) Toxicity management for patients receiving novel T-cell engaging therapies.Curr Opin Pediatr26:43–49

DOI

5
BeaneJD, LeeG, ZhengZ, MendelM, Abate-DagaD, BharathanM, BlackM, GandhiN, YuZ, ChandranS (2015) Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma.Mol Ther23:1380–1390

DOI

6
BeattyGL, HaasAR, MausMV, TorigianDA, SoulenMC, PlesaG, ChewA, ZhaoY, LevineBL, AlbeldaSM (2014) Mesothelinspecific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies.Cancer Immunol Res2:112–120

DOI

7
BerdienB, MockU, AtanackovicD, FehseB (2014) TALENmediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer.Gene Ther21:539–548

DOI

8
BoniniC, FerrariG, VerzelettiS, ServidaP, ZapponeE, RuggieriL, PonzoniM, RossiniS, MavilioF, TraversariC(1997) HSVTK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia.Science276:1719–1724

DOI

9
BrownCE, AlizadehD, StarrR, WengL, WagnerJR, NaranjoA, OstbergJR, BlanchardMS, KilpatrickJ, SimpsonJ (2016) Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.N Engl J Med375:2561–2569

DOI

10
CarpenitoC, MiloneMC, HassanR, SimonetJC, LakhalM, SuhoskiMM, Varela-RohenaA, HainesKM, HeitjanDF,AlbeldaSM (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.Proc Natl Acad Sci USA106:3360–3365

DOI

11
CarpenterRO, EvbuomwanMO, PittalugaS, RoseJJ, RaffeldM, YangS,GressREHakimFT, KochenderferJN (2013) B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma.Clin Cancer Res19:2048–2060

DOI

12
CarusoHG, HurtonLV, NajjarA, RushworthD, AngS, OlivaresS, MiT, SwitzerK, SinghH, HulsH (2015) Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity.Cancer Res75:3505–3518

DOI

13
CherkasskyL, MorelloA, Villena-VargasJ, FengY, DimitrovDS, JonesDR, SadelainM, AdusumilliPS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.J Clin Investig126:3130–3144

DOI

14
ChinnasamyD, YuZ, TheoretMR, ZhaoY, ShrimaliRK, MorganRA, FeldmanSA, RestifoNP, RosenbergSA (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.J Clin Investig120:3953–3968

DOI

15
ChmielewskiM, AbkenH (2015) TRUCKs: the fourth generation of CARs.Expert Opin Biol Ther15:1145–1154

DOI

16
ChmielewskiM, HombachA, HeuserC, AdamsGP, AbkenH (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity.J Immunol173:7647–7653

DOI

17
ChmielewskiM, HombachAA, AbkenH (2014) Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma.Immunol Rev257:83–90

DOI

18
CiceriF, BoniniC, StanghelliniMT, BondanzaA, TraversariC, SalomoniM, TurchettoL, ColombiS, BernardiM, PeccatoriJ (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study.Lancet Oncol10:489–500

DOI

19
CongL, RanFA, CoxD, LinS, BarrettoR, HabibN, HsuPD, WuX, JiangW, MarraffiniLA (2013) Multiplex genome engineering using CRISPR/Cas systems.Science339:819–823

DOI

20
CraddockJA, LuA, BearA, PuleM, BrennerMK, RooneyCM, FosterAE (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b.J Immunother33:780–788

DOI

21
CurranMA, MontalvoW, YagitaH, AllisonJP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.Proc Natl Acad Sci USA107:4275–4280

DOI

22
EshharZ, WaksT, GrossG, SchindlerDG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc Natl Acad Sci USA90:720–724

DOI

23
EyquemJ, Mansilla-SotoJ, GiavridisT, van der StegenSJ, HamiehM, CunananKM, OdakA, GonenM, SadelainM (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection.Nature543:113–117

DOI

24
FaitschukE, HombachAA, FrenzelLP, WendtnerCM, AbkenH (2016) Chimeric antigen receptor T cells targeting Fc mu receptor selectively eliminate CLL cells while sparing healthy B cells.Blood128:1711–1722

DOI

25
FengK, GuoY, DaiH, WangY, LiX, JiaH, HanW (2016) Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer.Sci China Life Sci59:468–479

DOI

26
FinneyHM, LawsonAD, BebbingtonCR, WeirAN (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product.J Immunol161:2791–2797

27
FitzGeraldDJ, WayneAS, KreitmanRJ, PastanI (2011) Treatment of hematologic malignancies with immunotoxins and antibodydrug conjugates.Cancer Res71:6300–6309

DOI

28
GruppSA, KalosM, BarrettD, AplencR, PorterDL, RheingoldSR, TeacheyDT, ChewA, HauckB, WrightJF (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.N Engl J Med368:1509–1518

DOI

29
GubinMM, ZhangX, SchusterH, CaronE, WardJP, NoguchiT, IvanovaY, HundalJ, ArthurCD, KrebberWJ (2014) Checkpoint blockade cancer immunotherapy targets tumourspecific mutant antigens.Nature515:577–581

DOI

30
HasoW, LeeDW, ShahNN, Stetler-StevensonM, YuanCM, PastanIH, DimitrovDS, MorganRA, FitzGeraldDJ, BarrettDM (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.Blood121:1165–1174

DOI

31
HongH, StastnyM, BrownC, ChangWC, OstbergJR, FormanSJ, JensenMC (2014) Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes.J Immunother37:93–104

DOI

32
HoyosV, SavoldoB, QuintarelliC, MahendravadaA, ZhangM, VeraJ, HeslopHE, RooneyCM, BrennerMK, DottiG (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety.Leukemia24:1160–1170

DOI

33
HudecekM, SchmittTM, BaskarS, Lupo-StanghelliniMT, NishidaT, YamamotoTN, BleakleyM, TurtleCJ, ChangWC, GreismanHA (2010) The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor.Blood116:4532–4541

DOI

34
HudecekM, Lupo-StanghelliniMT, KosasihPL, SommermeyerD, JensenMC, RaderC, RiddellSR (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor Tcells.Clin Cancer Res19:3153–3164

DOI

35
JohnsonLA, SchollerJ, OhkuriT, KosakaA, PatelPR, McGettiganSE, NaceAK, DentchevT, ThekkatP, LoewA (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.Sci Transl Med7:275ra222

DOI

36
KershawMH, WestwoodJA, ParkerLL, WangG, EshharZ, MavroukakisSA, WhiteDE, WunderlichJR, CanevariS, Rogers-FreezerL (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.Clinl Cancer Res12:6106–6115

DOI

37
KlossCC, CondominesM, CartellieriM, BachmannM, SadelainM (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells.Nat Biotechnol31:71–75

DOI

38
LamersCH, SleijferS, VultoAG, KruitWH, KliffenM, DebetsR, GratamaJW, StoterG, OosterwijkE (2006a) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience.J Clin Oncol24:e20–e22

DOI

39
LamersCH, van ElzakkerP, LangeveldSC, SleijferS, GratamaJW (2006b) Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma: GMP-controlled transduction and expansion of patient’s T lymphocytes using a carboxy anhydrase IX-specific scFv transgene.Cytotherapy8:542–553

DOI

40
LanitisE, PoussinM, KlattenhoffAW, SongD, SandaltzopoulosR, JuneCH, PowellDJ Jr (2013) Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo.Cancer Immunol Res1:43–53

DOI

41
LinetteGP, StadtmauerEA, MausMV, RapoportAP, LevineBL, EmeryL, LitzkyL, BaggA, CarrenoBM, CiminoPJ (2013) Cardiovascular toxicity and titin cross-reactivity of affinity enhanced Tcells in myeloma and melanoma.Blood122:863–871

DOI

42
LiuX, JiangS, FangC, YangS, OlalereD, PequignotEC, CogdillAP, LiN, RamonesM, GrandaB (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice.Cancer Res75:3596–3607

DOI

43
LiuX, RanganathanR, JiangS, FangC, SunJ, KimS, NewickK, LoA, JuneCH, ZhaoY (2016a) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res76:1578–1590

DOI

44
LiuX, ZhangY, ChengC, ChengAW, ZhangX, LiN, XiaC, WeiX, LiuX, WangH(2016b) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells.Cell Res27:154–157

DOI

45
LouisCU, SavoldoB, DottiG, PuleM, YvonE, MyersGD, RossigC, RussellHV, DioufO, LiuE (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma.Blood118:6050–6056

DOI

46
LuYC, RobbinsPF (2016) Cancer immunotherapy targeting neoantigens.Semin Immunol28:22–27

DOI

47
MacLeodDT, AntonyJ, MartinAJ, MoserRJ, HekeleA, WetzelKJ, BrownAE, TriggianoMA, HuxJA, PhamCD (2017) Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells.Mol Ther25:949–961

DOI

48
MaherJ, BrentjensRJ, GunsetG, RiviereI, SadelainM(2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor.Nat Biotechnol20:70–75

DOI

49
MardirosA, Dos SantosC, McDonaldT, BrownCE, WangX, BuddeLE, HoffmanL, AguilarB, ChangWC, BretzlaffW (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia.Blood122:3138–3148

DOI

50
MaudeSL, FreyN, ShawPA, AplencR, BarrettDM, BuninNJ, ChewA, GonzalezVE, ZhengZ, LaceySF (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia.N Engl J Med371:1507–1517

DOI

51
MausMV, HaasAR, BeattyGL, AlbeldaSM, LevineBL, LiuX, ZhaoY, KalosM, JuneCH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans.Cancer Immunol Res1:26–31

DOI

52
MorganRA, YangJC, KitanoM, DudleyME, LaurencotCM, RosenbergSA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.Mol Ther18:843–851

DOI

53
MorganRA, ChinnasamyN, Abate-DagaD, GrosA, RobbinsPF, ZhengZ, DudleyME, FeldmanSA, YangJC, SherryRM (2013) Cancer regression and neurological toxicity following Anti-MAGE-A3 TCR gene therapy.J Immunother36:133–151

DOI

54
NewickK, O’BrienS, SunJ, KapoorV, MaceykoS, LoA, PureE, MoonE, AlbeldaSM (2016) Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization.Cancer Immunol Res4:541–551

DOI

55
OliveiraG, GrecoR, Lupo-StanghelliniMT, VagoL, BoniniC (2012) Use of TK-cells in haploidentical hematopoietic stem cell transplantation.Curr Opin Hematol19:427–433

DOI

56
OrenR, Hod-MarcoM, Haus-CohenM, ThomasS, BlatD, DuvshaniN, DenkbergG, ElbazY, BenchetritF, EshharZ (2014) Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.J Immunol193:5733–5743

DOI

57
ParkJR, DigiustoDL, SlovakM, WrightC, NaranjoA, WagnerJ, MeechoovetHB, BautistaC, ChangWC, OstbergJR(2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma.Mol Ther15:825–833

DOI

58
ParkhurstMR, YangJC, LanganRC, DudleyME, NathanDA, FeldmanSA, DavisJL, MorganRA, MerinoMJ, SherryRM (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.Mol Ther19:620–626

DOI

59
PhilipB, KokalakiE, MekkaouiL, ThomasS, StraathofK, FlutterB, MarinV, MarafiotiT, ChakravertyR, LinchD (2014) A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy.Blood124:1277–1287

DOI

60
PorterDL, LevineBL, KalosM, BaggA, JuneCH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.N Engl J Med365:725–733

DOI

61
PorterDL, HwangWT, FreyNV, LaceySF, ShawPA, LorenAW, BaggA, MarcucciKT, ShenA, GonzalezV(2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia.Sci Transl Med7:303ra139

DOI

62
PoseyAD Jr, SchwabRD, BoesteanuAC, SteentoftC, MandelU, EngelsB, StoneJD, MadsenTD, SchreiberK, HainesKM (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma.Immunity44:1444–1454

DOI

63
ProsserME, BrownCE, ShamiAF, FormanSJ, JensenMC (2012) Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor.Mol Immunol51:263–272

DOI

64
ProvasiE, GenoveseP, LombardoA, MagnaniZ, LiuPQ, ReikA, ChuV, PaschonDE, ZhangL, KuballJ (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer.Nat Med18:807–815

DOI

65
QasimW, ZhanH, SamarasingheS, AdamsS, AmroliaP, StaffordS, ButlerK, RivatC, WrightG, SomanaK (2017) Molecular remission of infant B-ALL after infusion of universal TALEN geneedited CAR T cells.Sci Transl Med9:eaaj2013

66
RafiqS, PurdonTJ, DaniyanAF, KoneruM, DaoT, LiuC, ScheinbergDA, BrentjensRJ (2016) Optimized T-cell receptormimic (TCRm) chimeric antigen receptor T-cells directed towards the intracellular Wilms Tumor 1 antigen.Leukemia.

DOI

67
ReiterY, Di CarloA, FuggerL, EngbergJ, PastanI (1997) Peptidespecific killing of antigen-presenting cells by a recombinant antibody-toxin fusion protein targeted to major histocompatibility complex/peptide class I complexes with T cell receptor-like specificity.Proc Natl Acad Sci USA94:4631–4636

DOI

68
RenJ, LiuX, FangC, JiangS, JuneCH, ZhaoY (2016) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition.Clin Cancer Res.

DOI

69
RobbinsPF, LuYC, El-GamilM, LiYF, GrossC, GartnerJ, LinJC, TeerJK, CliftenP, TycksenE(2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells.Nat Med19:747–752

DOI

70
RobertC, LongGV, BradyB, DutriauxC, MaioM, MortierL, HasselJC, RutkowskiP, McNeilC, Kalinka-WarzochaE (2015) Nivolumab in previously untreated melanoma without BRAF mutation.N Engl J Med372:320–330

DOI

71
RoybalKT, RuppLJ, MorsutL, WalkerWJ, McNallyKA, ParkJS, LimWA (2016a) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits.Cell164:770–779

DOI

72
RoybalKT, WilliamsJZ, MorsutL, RuppLJ, KolinkoI, ChoeJH, WalkerWJ, McNallyKA, LimWA (2016b) Engineering Tcells with customized therapeutic response programs using synthetic notch receptors.Cell167(419–432):e416

73
SakemuraR, TerakuraS, WatanabeK, JulamaneeJ, TakagiE, MiyaoK, KoyamaD, GotoT, HanajiriR, NishidaT (2016) A Tet-On inducible system for controlling CD19-Chimeric antigen receptor expression upon drug administration.Cancer Immunol Res4:658–668

DOI

74
SakuishiK, ApetohL, SullivanJM, BlazarBR, KuchrooVK, AndersonAC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity.J Exp Med207:2187–2194

DOI

75
SampsonJH, ChoiBD, Sanchez-PerezL, SuryadevaraCM, SnyderDJ, FloresCT, SchmittlingRJ, NairSK, ReapEA, NorbergPK (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.Clin Cancer Res20:972–984

DOI

76
SchubertML, HuckelhovenA, HoffmannJM, SchmittA, WuchterP, SellnerL, HofmannS, HoAD, DregerP, SchmittM (2016) Chimeric antigen receptor T cell therapy targeting CD19-positive leukemia and lymphoma in the context of stem cell transplantation.Hum Gene Ther27(10):758–771

DOI

77
SchumacherTN, SchreiberRD (2015) Neoantigens in cancer immunotherapy.Science348:69–74

DOI

78
SinghJA, BegS, Lopez-OlivoMA (2011) Tocilizumab for rheumatoid arthritis: a Cochrane systematic review.J Rheumatol38:10–20

DOI

79
SinghN, LiuX, HulittJ, JiangS, JuneCH, GruppSA, BarrettDM, ZhaoY (2014) Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma.Cancer Immunol Res2:1059–1070

DOI

80
SmithMR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance.Oncogene22:7359–7368

DOI

81
SuzukiM, CheungNK (2015) Disialoganglioside GD2 as a therapeutic target for human diseases.Expert Opin Ther Targets19:349–362

DOI

82
TaubeJM, KleinA, BrahmerJR, XuH, PanX, KimJH, ChenL, PardollDM, TopalianSL, AndersRA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy.Clin Cancer Res20:5064–5074

DOI

83
TillBG, JensenMC, WangJ, ChenEY, WoodBL, GreismanHA, QianX, JamesSE, RaubitschekA, FormanSJ (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells.Blood112:2261–2271

DOI

84
TillBG, JensenMC, WangJ, QianX, GopalAK, MaloneyDG, LindgrenCG, LinY, PagelJM, BuddeLE (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results.Blood119:3940–3950

DOI

85
TopalianSL, SznolM, McDermottDF, KlugerHM, CarvajalRD, SharfmanWH, BrahmerJR, LawrenceDP, AtkinsMB, PowderlyJD (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab.J Clin Oncol32:1020–1030

DOI

86
TorikaiH, ReikA, SoldnerF, WarrenEH, YuenC, ZhouY, CrosslandDL, HulsH, LittmanN, ZhangZ (2013) Toward eliminating HLA class I expression to generate universal cells from allogeneic donors.Blood122:1341–1349

DOI

87
TranE, TurcotteS, GrosA, RobbinsPF, LuYC, DudleyME, WunderlichJR, SomervilleRP, HoganK, HinrichsCS (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science344:641–645

DOI

88
TuguesS, BurkhardSH, OhsI, VrohlingsM, NussbaumK, Vom BergJ, KuligP, BecherB(2015) New insights into IL-12-mediated tumor suppression.Cell Death Differ22:237–246

DOI

89
ValtonJ, GuyotV, MarechalA, FilholJM, JuilleratA, DuclertA, DuchateauP, PoirotL (2015) A Multidrug-resistant Engineered CAR T cell for allogeneic combination immunotherapy.Mol Ther23:1507–1518

DOI

90
VeraJ, SavoldoB, VigourouxS, BiagiE, PuleM, RossigC, WuJ, HeslopHE, RooneyCM, BrennerMK (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells.Blood108:3890–3897

DOI

91
WangX, ChangWC, WongCW, ColcherD, ShermanM, OstbergJR, FormanSJ, RiddellSR, JensenMC (2011) A transgeneencoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells.Blood118:1255–1263

DOI

92
WatanabeK, TerakuraS, MartensAC, van MeertenT, UchiyamaS, ImaiM, SakemuraR, GotoT, HanajiriR, ImahashiN (2015) Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells.J Immunol194:911–920

DOI

93
WilkieS, van SchalkwykMC, HobbsS, DaviesDM, van der StegenSJ, PereiraAC, BurbridgeSE, BoxC, EcclesSA, MaherJ (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling.J Clin Immunol32:1059–1070

DOI

94
WolchokJD, HodiFS, WeberJS, AllisonJP, UrbaWJ, RobertC, O’DaySJ, HoosA, HumphreyR, BermanDM (2013) Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma.Ann N Y Acad Sci1291:1–13

DOI

95
WuCY, RoybalKT, PuchnerEM, OnufferJ, LimWA (2015) Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.Science350:aab4077

DOI

96
YarchoanM, JohnsonBA III, LutzER, LaheruDA, JaffeeEM (2017) Targeting neoantigens to augment antitumour immunity.Nat Rev Cancer17:209–222

DOI

97
ZahE, LinMY, Silva-BenedictA, JensenMC, ChenYY (2016) Tcells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells.Cancer Immunol Res4:498–508

DOI

98
ZhangL, KerkarSP, YuZ, ZhengZ, YangS, RestifoNP, RosenbergSA, MorganRA (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment.Mol Ther19:751–759

DOI

99
ZhangL, MorganRA, BeaneJD, ZhengZ, DudleyME, KassimSH, NahviAV, NgoLT, SherryRM, PhanGQ (2015) Tumorinfiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma.Clin Cancer Res21:2278–2288

DOI

100
ZhangW-Y, WangY, GuoY-L, DaiH-R, YangQ-M, ZhangY-J, ZhangY, ChenM-X, WangC-M, FengK-C (2016) Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report.Signal Transduct Target Ther1:16002

DOI

101
ZhaoY, ZhengZ, CohenCJ, GattinoniL, PalmerDC, RestifoNP, RosenbergSA, MorganRA (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation.Mol Ther13:151–159

DOI

102
ZhaoY, WangQJ, YangS, KochenderferJN, ZhengZ, ZhongX, SadelainM, EshharZ, RosenbergSA, MorganRA (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity.J Immunol183:5563–5574

DOI

103
ZhaoY, MoonE, CarpenitoC, PaulosCM, LiuX, BrennanAL, ChewA, CarrollRG, SchollerJ, LevineBL (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.Cancer Res70:9053–9061

DOI

104
ZhuX, PrasadS, GaedickeS, HettichM, FiratE, NiedermannG (2015) Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.Oncotarget6:171–184

DOI

Outlines

/