An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells
Received date: 13 Sep 2016
Accepted date: 01 Dec 2016
Published date: 12 Jun 2017
Copyright
Human pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.
Key words: CRISPR; transcription activation; human pluripotent stem cells; NANOG; pluripotency
Jianying Guo , Dacheng Ma , Rujin Huang , Jia Ming , Min Ye , Kehkooi Kee , Zhen Xie , Jie Na . An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells[J]. Protein & Cell, 2017 , 8(5) : 379 -393 . DOI: 10.1007/s13238-016-0360-8
1 |
BakerDEC, HarrisonNJ, MaltbyE, SmithK, MooreHD, ShawPJ, HeathPR, HoldenH, AndrewsPW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol25:207–215
|
2 |
BalboaD, WeltnerJ, EurolaS, TrokovicR, WartiovaaraK, OtonkoskiT (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep5:448–459
|
3 |
BedzhovI, Zernicka-GoetzM (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell156:1032–1044
|
4 |
BoyerLA, LeeTI, ColeMF, JohnstoneSE, LevineSS, ZuckerJP, GuentherMG, KumarRM, MurrayHL, JennerRG (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122:947–956
|
5 |
BronsIGM, SmithersLE, TrotterMWB, Rugg-GunnP, SunB, de Sousa LopesSMC, HowlettSK, ClarksonA, Ahrlund-RichterL, PedersenRA (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature448:191–195
|
6 |
BurridgePW, HolmströmA, and WuJC (2015). Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet: 21.23. 21–21.23. 15
|
7 |
ChambersI, SilvaJ, ColbyD, NicholsJ, NijmeijerB, RobertsonM, VranaJ, JonesK, GrotewoldL, SmithA (2007) Nanog safeguards pluripotency and mediates germline development. Nature450:1230–1234
|
8 |
ChangM-Y, RheeY-H, YiS-H, LeeS-J, KimR-K, KimH, ParkC-H, LeeS-H (2014) Doxycycline enhances survival and self-renewal of human pluripotent stem cells. Stem Cell Rep3:353–364
|
9 |
ChavezA, ScheimanJ, VoraS, PruittBW, TuttleM, IyerEPR, LinS, KianiS, GuzmanCD, WiegandDJ (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods12:326–328
|
10 |
ChenY, NiuY, LiY, AiZ, KangY, ShiH, XiangZ, YangZ, TanT, SiW (2015) Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell17:116–124
|
11 |
DeglincertiA, CroftGF, PietilaLN, Zernicka-GoetzM, SiggiaED, BrivanlouAH (2016) Self-organization of the in vitro attached human embryo. Nature533:251–254
|
12 |
DeKelverRC, ChoiVM, MoehleEA, PaschonDE, HockemeyerD, MeijsingSH, SancakY, CuiX, SteineEJ, MillerJC (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res20:1133–1142
|
13 |
DuggalG, WarrierS, GhimireS, BroekaertD, Van der JeughtM, LiermanS, DerooT, PeelmanL, Van SoomA, CornelissenR (2015) Alternative routes to induce naive pluripotency in human embryonic stem cells. Stem Cells33:2686–2698
|
14 |
GafniO, WeinbergerL, MansourAA, ManorYS, ChomskyE, Ben-YosefD, KalmaY, ViukovS, MazaI, ZviranA (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature504:282–286
|
15 |
GengaRM, KearnsNA, MaehrR (2016) Controlling transcription in human pluripotent stem cells using CRISPR-effectors. Methods101:36–42
|
16 |
GilbertLA, HorlbeckMA, AdamsonB, VillaltaJE, ChenY, WhiteheadEH, GuimaraesC, PanningB, PloeghHL, BassikMC (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell159:647–661
|
17 |
GongS, LiQ, JeterCR, FanQ, TangDG, LiuB (2015) Regulation of NANOG in cancer cells. Mol Carcinog54:679–687
|
18 |
GonzálezF, ZhuZ, ShiZ-D, LelliK, VermaN, LiQV, HuangfuD (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell15:215–226
|
19 |
HannaJ, SahaK, PandoB, Van ZonJ, LengnerCJ, CreyghtonMP, van OudenaardenA, JaenischR (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462:595–601
|
20 |
HannaJ, ChengAW, SahaK, KimJ, LengnerCJ, SoldnerF, CassadyJP, MuffatJ, CareyBW, JaenischR (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci107:9222–9227
|
21 |
HiltonIB, D’IppolitoAM, VockleyCM, ThakorePI, CrawfordGE, ReddyTE, GersbachCA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol33:510–517
|
22 |
HockemeyerD, SoldnerF, BeardC, GaoQ, MitalipovaM, DeKelverRC, KatibahGE, AmoraR, BoydstonEA, ZeitlerB (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol27:851–857
|
23 |
HoganB, CostantiniF, LacyE (1986) Manipulating the mouse embryo: a laboratory manual, vol 34. Cold spring harbor laboratory, Cold Spring Harbor, NY
|
24 |
HsuPD, LanderES, ZhangF (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell157:1262–1278
|
25 |
KearnsNA, GengaRMJ, EnuamehMS, GarberM, WolfeSA, MaehrR (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development141:219–223
|
26 |
KonermannS, BrighamMD, TrevinoAE, JoungJ, AbudayyehOO, BarcenaC, HsuPD, HabibN, GootenbergJS, NishimasuH (2014) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature517:583–588
|
27 |
LombardoA, CesanaD, GenoveseP, Di StefanoB, ProvasiE, ColomboDF, NeriM, MagnaniZ, CantoreA, RisoPL (2011) Sitespecific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods8:861–869
|
28 |
MaederML, LinderSJ, CascioVM, FuY, HoQH, JoungJK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods10:977–979
|
29 |
MandegarMA, HuebschN, FrolovEB, ShinE, TruongA, OlveraMP, ChanAH, MiyaokaY, HolmesK, SpencerCI (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell18:541–553
|
30 |
MitsuiK, TokuzawaY, ItohH, SegawaK, MurakamiM, TakahashiK, MaruyamaM, MaedaM, YamanakaS (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113:631–642
|
31 |
OrdovásL, BoonR, PistoniM, ChenY,,WolfsE, GuoW, SambathkumarR, Bobis-WozowiczS, HelsenN, VanhoveJ (2015) Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locusmediated transgene inhibition. Stem cell Rep5:918–931
|
32 |
QianK, HuangCL, ChenH, BlackbournLW, ChenY, CaoJ, YaoL, SauveyC, DuZ, ZhangSC (2014) A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cells32:1230–1238
|
33 |
ShahbaziMN, JedrusikA, VuoristoS, RecherG, HupalowskaA, BoltonV, FogartyNME, CampbellA, DevitoLG, IlicD (2016) Selforganization of the human embryo in the absence of maternal tissues. Nature cell Biol18:700–708
|
34 |
SilvaJ, NicholsJ, TheunissenTW, GuoG, van OostenAL, BarrandonO, WrayJ, YamanakaS, ChambersI, SmithA (2009) Nanog is the gateway to the pluripotent ground state. Cell138:722–737
|
35 |
SmithJR, MaguireS, DavisLA, AlexanderM, YangF, ChandranS, PedersenRA(2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells26:496–504
|
36 |
TaapkenSM, NislerBS, NewtonMA, Sampsell-BarronTL, LeonhardKA, McIntireEM, MontgomeryKD (2011) Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol29:313–314
|
37 |
TakashimaY, GuoG, LoosR, NicholsJ, FiczG, KruegerF, OxleyD, SantosF, ClarkeJ, MansfieldW (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell158:1254–1269
|
38 |
TanenbaumME, GilbertLA, QiLS, WeissmanJS, ValeRD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell159:635–646
|
39 |
TesarPJ, ChenowethJG, BrookFA, DaviesTJ, EvansEP, MackDL, GardnerRL, McKayRDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature448:196–199
|
40 |
TheunissenTW, PowellBE, WangH, MitalipovaM, FaddahDA, ReddyJ, FanZP, MaetzelD, GanzK, ShiL (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell15:471–487
|
41 |
WareCB, NelsonAM, MechamB, HessonJ, ZhouW, JonlinEC, Jimenez-CalianiAJ, DengX, CavanaughC, CookS (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci111:4484–4489
|
42 |
WiedenheftB, SternbergSH, DoudnaJA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature482:331–338
|
43 |
XuX, TaoY, GaoX, ZhangL, LiX, ZouW, RuanK, WangF, G-lXu, HuR (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov2:16009
|
44 |
ZhuZ, GonzálezF, HuangfuD (2014) The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol546:215
|
45 |
ZhuZ, VermaN, GonzálezF, ShiZ-D, HuangfuD (2015) A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep4:1103–1111
|
/
〈 | 〉 |