Reversible phosphorylation of the 26S proteasome
Received date: 15 Dec 2016
Accepted date: 26 Jan 2017
Published date: 19 May 2017
Copyright
The 26S proteasome at the center of the ubiquitinproteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.
Key words: proteasome; phosphorylation; kinase; phosphatase; protein degradation
Xing Guo , Xiuliang Huang , Mark J. Chen . Reversible phosphorylation of the 26S proteasome[J]. Protein & Cell, 2017 , 8(4) : 255 -272 . DOI: 10.1007/s13238-017-0382-x
1 |
AsaiM, TsukamotoO, MinaminoT, AsanumaH, FujitaM, AsanoY, TakahamaH, SasakiH, HigoS, AsakuraM
|
2 |
AsanoS, FukudaY, BeckF, AufderheideA, ForsterF, DanevR, BaumeisterW (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons.Science347:439–442
|
3 |
BaiY, LiJ, FangB, EdwardsA, ZhangG, BuiM, EschrichS, AltiokS, KoomenJ, HauraEB (2012) Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors.Cancer Res72:2501–2511
|
4 |
Bardag-GorceF, VenkateshR, LiJ, FrenchBA, FrenchSW (2004) Hyperphosphorylation of rat liver proteasome subunits: the effects of ethanol and okadaic acid are compared.Life Sci75:585–597
|
5 |
BeausoleilSA, VillenJ, GerberSA, RushJ, GygiSP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization.Nat Biotechnol24: 1285–1292
|
6 |
BeckerW (2012) Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control.Cell Cycle11:3389–3394
|
7 |
BenedictCM, ClawsonGA (1996) Nuclear multicatalytic proteinase subunit RRC3 is important for growth regulation in hepatocytes.Biochemistry35:11612–11621
|
8 |
BianY, LiL, DongM, LiuX, KanekoT, ChengK, LiuH, VossC, CaoX, WangY
|
9 |
BingolB, SchumanEM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines.Nature441:1144–1148
|
10 |
BingolB, ShengM (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease.Neuron69:22–32
|
11 |
BingolB, WangC-F, ArnottD, ChengD, PengJ, ShengM (2010) Autophosphorylated CaMKIIα acts as a Scaffold to recruit proteasomes to dendritic spines.Cell140:567–578
|
12 |
BoseS, BrooksP, MasonGG, RivettAJ (2001) gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation.Biochem J353:291–297
|
13 |
BoseS, StratfordFL, BroadfootKI, MasonGG, RivettAJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon.Biochem J378:177–184
|
14 |
BrillLM, XiongW, LeeKB, FicarroSB, CrainA, XuY, TerskikhA, SnyderEY, DingS (2009) Phosphoproteomic analysis of human embryonic stem cells.Cell Stem Cell5:204–213
|
15 |
CastanoJG, MahilloE, AriztiP, ArribasJ (1996) Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis.Biochemistry35:3782–3789
|
16 |
ChenS, WuJ, LuY, MaYB, LeeBH, YuZ, OuyangQ, FinleyDJ, KirschnerMW, MaoY(2016) Structural basis for dynamic regulation of the human 26S proteasome.Proc Natl Acad Sci USA113:12991–12996
|
17 |
ChouTF, DeshaiesRJ (2011) Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system.J Biol Chem286:16546–16554
|
18 |
ChoudharyC, OlsenJV, BrandtsC, CoxJ, ReddyPN, BohmerFD, GerkeV, Schmidt-ArrasDE, BerdelWE, Muller-TidowC
|
19 |
CuiZ, ScruggsSB, GildaJE, PingP, GomesAV (2014) Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond.J Mol Cell Cardiol71:32–42
|
20 |
DephoureN, ZhouC, VillenJ, BeausoleilSA, BakalarskiCE, ElledgeSJ, GygiSP (2008) A quantitative atlas of mitotic phosphorylation.Proc Natl Acad Sci USA105:10762–10767
|
21 |
DeverauxQ, JensenC, RechsteinerM (1995) Molecular cloning and expression of a 26 S protease subunit enriched in dileucine repeats.J Biol Chem270:23726–23729
|
22 |
DjakovicSN, SchwarzLA, BarylkoB, DeMartinoGN, PatrickGN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.J Biol Chem284:26655–26665
|
23 |
DjakovicSN, Marquez-LonaEM, JakawichSK, WrightR, ChuC, SuttonMA, PatrickGN (2012) Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons.J Neurosci32:5126–5131
|
24 |
DjuranovicS, HartmannMD, HabeckM, UrsinusA, ZwicklP, MartinJ, LupasAN, ZethK (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.Mol Cell34:580–590
|
25 |
DrakeJM, GrahamNA, StoyanovaT, SedghiA, GoldsteinAS, CaiH, SmithDA, ZhangH, KomisopoulouE, HuangJ
|
26 |
DullaK, DaubH, HornbergerR, NiggEA, KornerR (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression.Mol Cell Proteomics9:1167–1181
|
27 |
EangR, Girbal-NeuhauserE, XuB, GairinJE (2009) Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines.Fundam Clin Pharmacol23:215–224
|
28 |
EhlersMD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.Nat Neurosci6:231–242
|
29 |
EhlingerA, WaltersKJ (2013) Structural insights into proteasome activationby the19Sregulatory particle.Biochemistry52:3618–3628
|
30 |
FengY, LongoDL, FerrisDK (2001) Polo-like kinase interacts with proteasomes and regulates their activity.Cell Growth Differ12:29–37
|
31 |
FinleyD (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome.Annu Rev Biochem78:477–513
|
32 |
FinleyD, ChenX, WaltersKJ (2016) Gates, channels, and switches: elements of the proteasome machine.Trends Biochem Sci41:77–93
|
33 |
FranchinC, CesaroL, SalviM, MillioniR, IoriE, CifaniP, JamesP, ArrigoniG, PinnaL (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells.Biochim Biophys Acta1854:609–623
|
34 |
FuhsSR, MeisenhelderJ, AslanianA, MaL, ZagorskaA, StankovaM, BinnieA, Al-ObeidiF, MaugerJ, LemkeG
|
35 |
FunakoshiM, TomkoRJ Jr, KobayashiH, HochstrasserM (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.Cell137:887–899
|
36 |
GerschM, HacklMW, DubiellaC, DobrinevskiA, GrollM, SieberSA (2015) A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, and inhibitor binding.Chem Biol22:404–411
|
37 |
GilletteTG, HillJA (2013) PKG primes the proteasome.Circulation128:325–327
|
38 |
GnadF, YoungA, ZhouW, LyleK, OngCC, StokesMP, SilvaJC, BelvinM, FriedmanLS, KoeppenH
|
39 |
GoswamiT, LiX, SmithAM, LuderowskiEM, VincentJJ, RushJ, BallifBA (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain.Proteomics12:2185–2189
|
40 |
GrollM, DitzelL, LoweJ, StockD, BochtlerM, BartunikHD, HuberR (1997) Structure of 20S proteasome from yeast at 2.4 A resolution.Nature386:463–471
|
41 |
Grosstessner-HainK, HegemannB, NovatchkovaM, RamesederJ, JoughinBA, HudeczO, RoitingerE, PichlerP, KrautN, YaffeMB
|
42 |
GuTL, GossVL, ReevesC, PopovaL, NardoneJ, MacneillJ, WaltersDK, WangY, RushJ, CombMJ
|
43 |
GuoX, DixonJE (2016) The 26S proteasome: a cell cycle regulator regulated by cell cycle.Cell Cycle15:875–876
|
44 |
GuoA, VillenJ, KornhauserJ, LeeKA, StokesMP, RikovaK, PossematoA, NardoneJ, InnocentiG, WetzelR
|
45 |
GuoX, EngelJL, XiaoJ, TagliabracciVS, WangX, HuangL, DixonJE (2011) UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity.Proc Natl Acad Sci USA108:18649–18654
|
46 |
GuoX, WangX, WangZ, BanerjeeS, YangJ, HuangL, DixonJE (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis.Nat Cell Biol18:202–212
|
47 |
HaassC, KloetzelPM (1989) The Drosophila proteasome undergoes changes in its subunit pattern during development.Exp Cell Res180:243–252
|
48 |
HamiltonAM, OhWC, Vega-RamirezH, SteinIS, HellJW, PatrickGN, ZitoK (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome.Neuron74:1023–1030
|
49 |
HeY, GuoX, YuZH, WuL, GunawanAM, ZhangY, DixonJE, ZhangZY (2015) A potent and selective inhibitor for the UBLCP1 proteasome phosphatase.Bioorg Med Chem23:2798–2809
|
50 |
HoellerD, DikicI (2009) Targeting the ubiquitin system in cancer therapy.Nature458:438–444
|
51 |
HoltLJ, TuchBB, VillenJ, JohnsonAD, GygiSP, MorganDO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.Science325:1682–1686
|
52 |
HoughR, PrattG, RechsteinerM (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate.J Biol Chem262:8303–8313
|
53 |
HowardCJ, Hanson-SmithV, KennedyKJ, MillerCJ, LouHJ, JohnsonAD, TurkBE, HoltLJ (2014) Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity.Elife3:e04126
|
54 |
HuangX, LuanB, WuJ, ShiY (2016) An atomic structure of the human 26S proteasome.Nat Struct Mol Biol23:778–785
|
55 |
HuibregtseJM, MatouschekA (2016) Ramping up degradation for proliferation.Nat Cell Biol18:141–142
|
56 |
HunterT, SeftonBM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine.Proc Natl Acad Sci USA77:1311–1315
|
57 |
HusnjakK, ElsasserS, ZhangN, ChenX, RandlesL, ShiY, HofmannK, WaltersKJ, FinleyD, DikicI (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor.Nature453:481–488
|
58 |
IliukAB, MartinVA, AlicieBM, GeahlenRL, TaoWA (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers.Mol Cell Proteomics9:2162–2172
|
59 |
ImamiK, SugiyamaN, ImamuraH, WakabayashiM, TomitaM, TaniguchiM, UenoT, ToiM, IshihamaY (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways.Mol Cell Proteomics11:1741–1757
|
60 |
JaromeTJ, KwapisJL, RuenzelWL, HelmstetterFJ (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories.Front Behav Neurosci7:115
|
61 |
JaromeTJ, FerraraNC, KwapisJL, HelmstetterFJ (2016) CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval.Neurobiol Learn Mem128:103–109
|
62 |
JohnsonH, Del RosarioAM, BrysonBD, SchroederMA, SarkariaJN, WhiteFM (2012) Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.Mol Cell Proteomics11:1724–1740
|
63 |
KanekoT, HamazakiJ, IemuraS, SasakiK, FuruyamaK, NatsumeT, TanakaK, MurataS (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones.Cell137:914–925
|
64 |
KettenbachAN, SchweppeDK, FahertyBK, PechenickD, PletnevAA, GerberSA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells.Sci Signal4:rs5
|
65 |
KikuchiJ, IwafuneY, AkiyamaT, OkayamaA, NakamuraH, ArakawaN, KimuraY, HiranoH (2010) Co- and post-translational modifications of the 26S proteasome in yeast.Proteomics10:2769–2779
|
66 |
KimBG, LeeJH, AhnJM, ParkSK, ChoJH, HwangD, YooJS, YatesJR III, RyooHM, ChoJY(2009) ‘Two-stage doubletechnique hybrid (TSDTH)’ identification strategy for the analysis of BMP2-induced transdifferentiation of premyoblast C2C12 cells to osteoblast.J Proteome Res8:4441–4454
|
67 |
KloetzelPM (2001) Antigen processing by the proteasome.Nat Rev Mol Cell Biol2:179–187
|
68 |
LeeBH, LeeMJ, ParkS, OhDC, ElsasserS, ChenPC, GartnerC, DimovaN, HannaJ, GygiSP
|
69 |
LeeSH, ParkY, YoonSK, YoonJB (2010b) Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.J Biol Chem285:41280–41289
|
70 |
LiN, ZhangZ, ZhangW, WeiQ (2011) Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1alpha activity via the proteasome pathway.Biochem Biophys Res Commun405:468–472
|
71 |
LiD, DongQ, TaoQ, GuJ, CuiY, JiangX, YuanJ, LiW, XuR, JinY
|
72 |
LiJ, WilkinsonB, ClementelVA, HouJ, O’DellTJ, CobaMP (2016) Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome.Sci Signal9:rs8
|
73 |
LinJT, ChangWC, ChenHM, LaiHL, ChenCY, TaoMH, ChernY (2013) Regulation of feedback between protein kinase A and the proteasome system worsens Huntington’s disease.Mol Cell Biol33:1073–1084
|
74 |
LiuX, HuangW, LiC, LiP, YuanJ, LiX, QiuXB, MaQ, CaoC(2006) Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation.Mol Cell22:317–327
|
75 |
LivnehI, Cohen-KaplanV, Cohen-RosenzweigC, AvniN, CiechanoverA (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death.Cell Res26:869–885
|
76 |
LokireddyS, KukushkinNV, GoldbergAL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins.Proc Natl Acad Sci USA112:E7176–7185
|
77 |
LoweryDM, ClauserKR, HjerrildM, LimD, AlexanderJ, KishiK, OngSE, GammeltoftS, CarrSA, YaffeMB (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate.Embo J26:2262–2273
|
78 |
LuH, ZongC, WangY, YoungGW, DengN, SoudaP, LiX, WhiteleggeJ, DrewsO, YangPY
|
79 |
LuY, LeeBH, KingRW, FinleyD, KirschnerMW (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis.Science348:1250834
|
80 |
LudemannR, LereaKM, EtlingerJD (1993) Copurification of casein kinase II with 20 S proteasomes and phosphorylation of a 30-kDa proteasome subunit.J Biol Chem268:17413–17417
|
81 |
LundbyA, AndersenMN, SteffensenAB, HornH, KelstrupCD, FrancavillaC, JensenLJ, SchmittN, ThomsenMB, OlsenJV (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling.Sci Signal6:rs11
|
82 |
LuoW, SlebosRJ, HillS, LiM, BrabekJ, AmanchyR, ChaerkadyR, PandeyA, HamAJ, HanksSK (2008) Global impact of oncogenic Src on a phosphotyrosine proteome.J Proteome Res7:3447–3460
|
83 |
ManningG, WhyteDB, MartinezR, HunterT, SudarsanamS (2002) The protein kinase complement of the human genome.Science298:1912–1934
|
84 |
MarambaudP, WilkS, CheclerF (1996) Protein kinase A phosphorylation of the proteasome: a contribution to the alpha-secretase pathway in human cells.J Neurochem67:2616–2619
|
85 |
MasonGG, HendilKB, RivettAJ (1996) Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity.Eur J Biochem238:453–462
|
86 |
MasonGG, MurrayRZ, PappinD, RivettAJ (1998) Phosphorylation of ATPase subunits of the 26S proteasome.FEBS Lett430: 269–274
|
87 |
MatsuokaS, BallifBA, SmogorzewskaA, McDonaldER 3rd, HurovKE, LuoJ, BakalarskiCE, ZhaoZ, SoliminiN, LerenthalY
|
88 |
MatyskielaME, LanderGC, MartinA (2013) Conformational switching of the 26S proteasome enables substrate degradation.Nat Struct Mol Biol20:781–788
|
89 |
MayyaV, LundgrenDH, HwangSI, RezaulK, WuL, EngJK, RodionovV, HanDK (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.Sci Signal2:ra46
|
90 |
MertinsP, YangF, LiuT, ManiDR, PetyukVA, GilletteMA, ClauserKR, QiaoJW, GritsenkoMA, MooreRJ
|
91 |
MorenoD, KnechtE, ViolletB, SanzP (2008) A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism.FEBS Lett582:2650–2654
|
92 |
MurataS, SasakiK, KishimotoT, NiwaS, HayashiH, TakahamaY, TanakaK (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes.Science316:1349–1353
|
93 |
MurataS, YashirodaH, TanakaK (2009) Molecular mechanisms of proteasome assembly.Nat Rev Mol Cell Biol10:104–115
|
94 |
MurrayPF, PardoPS, ZeladaAM, PasseronS (2002) In vivo and in vitro phosphorylation of Candida albicans 20S proteasome.Arch Biochem Biophys404:116–125
|
95 |
MyekuN, WangH, Figueiredo-PereiraME (2012) cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.Neurosci Lett527:126–131
|
96 |
MyekuN, ClellandCL, EmraniS, KukushkinNV, YuWH, GoldbergAL, DuffKE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling.Nat Med22:46–53
|
97 |
NaganoK, ShinkawaT, MutohH, KondohO, MorimotoS, InomataN, AshiharaM, IshiiN, AokiY, HaramuraM (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.Proteomics9:2861–2874
|
98 |
OlsenJV, BlagoevB, GnadF, MacekB, KumarC, MortensenP, MannM (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.Cell127:635–648
|
99 |
OlsenJV, VermeulenM, SantamariaA, KumarC, MillerML, JensenLJ, GnadF, CoxJ, JensenTS, NiggEA
|
100 |
PackCG, YukiiH, Toh-eA, KudoT, TsuchiyaH, KaihoA, SakataE, MurataS, YokosawaH, SakoY
|
101 |
PanC, OlsenJV, DaubH, MannM (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics.Mol Cell Proteomics8:2796–2808
|
102 |
PardoPS, MurrayPF,WalzK, FrancoL, PasseronS(1998) In vivo and in vitro phosphorylation of the alpha 7/PRS1 subunit of Saccharomyces cerevisiae 20 S proteasome: in vitro phosphorylation by protein kinase CK2 is absolutely dependent on polylysine.Arch Biochem Biophys349:397–401
|
103 |
ParkS, RoelofsJ, KimW, RobertJ, SchmidtM, GygiSP, FinleyD (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini.Nature459:866–870
|
104 |
PereiraME, WilkS (1990) Phosphorylation of the multicatalytic proteinase complex from bovine pituitaries by a copurifying cAMP-dependent protein kinase.Arch Biochem Biophys283:68–74
|
105 |
PethA, KukushkinN, BosseM, GoldbergAL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs.J Biol Chem288:7781–7790
|
106 |
PetroccaF, AltschulerG, TanSM, MendilloML, YanH, JerryDJ, KungAL, HideW, InceTA, LiebermanJ (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells.Cancer Cell24:182–196
|
107 |
RablJ, SmithDM, YuY, ChangSC, GoldbergAL, ChengY (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases.Mol Cell30:360–368
|
108 |
RainerPP, KassDA (2016) Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G.Cardiovasc Res111:154–162
|
109 |
RanekMJ, TerpstraEJ, LiJ, KassDA, WangX (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins.Circulation128:365–376
|
110 |
RigboltKT, ProkhorovaTA, AkimovV, HenningsenJ, JohansenPT, KratchmarovaI, KassemM, MannM, OlsenJV, BlagoevB (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation.Sci Signal4:rs3
|
111 |
RikovaK, GuoA, ZengQ, PossematoA, YuJ, HaackH, NardoneJ, LeeK, ReevesC, LiY
|
112 |
RivettJA, BoseS, BrooksP, BroadfootKI (2001) Regulation of proteasome complexes by γ-interferon and phosphorylation.Biochimie83:363–366
|
113 |
RoelofsJ, ParkS, HaasW, TianG, McAllisterFE, HuoY, LeeBH, ZhangF, ShiY, GygiSP
|
114 |
RuperezP, Gago-MartinezA, BurlingameAL, Oses-PrietoJA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells.Mol Cell Proteomics11:171–186
|
115 |
RushJ, MoritzA, LeeKA, GuoA, GossVL, SpekEJ, ZhangH, ZhaXM, PolakiewiczRD, CombMJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.Nat Biotechnol23:94–101
|
116 |
SantamariaA, WangB, EloweS, MalikR, ZhangF, BauerM, SchmidtA, SilljeHH, KornerR, NiggEA (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle.Mol Cell Proteomics10(M110):004457
|
117 |
SantariusT, ShipleyJ, BrewerD, StrattonMR, CooperCS (2010) A census of amplified and overexpressed human cancer genes.Nat Rev Cancer10:59–64
|
118 |
SatohK, NishikawaT, YokosawaH, SawadaH (1995) Phosphorylation of proteasome substrate by a protein kinase associated with the 26 S proteasome is linked to the ATP-dependent proteolysis of the 26 S proteasome.Biochem Biophys Res Commun213:7–14
|
119 |
SatohK, SasajimaH, NyoumuraK-I, YokosawaH, SawadaH (2000) Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit.Biochemistry40:314–319
|
120 |
SchmidtM, FinleyD (2014) Regulation of proteasome activity in health and disease.Biochim Biophys Acta1843:13–25
|
121 |
SchmidtF, DahlmannB, HustoftHK, KoehlerCJ, StrozynskiM, KlossA, Zimny-ArndtU, JungblutPR, ThiedeB (2011) Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells.Amino Acids41:351–361
|
122 |
SchreinerP, ChenX, HusnjakK, RandlesL, ZhangN, ElsasserS, FinleyD, DikicI, WaltersKJ, GrollM (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.Nature453:548–552
|
123 |
SchweitzerA, AufderheideA, RudackT, BeckF, PfeiferG, PlitzkoJM, SakataE, SchultenK, ForsterF, BaumeisterW (2016) Structure of the human 26S proteasome at a resolution of 3.9 A.Proc Natl Acad Sci USA113:7816–7821
|
124 |
ScruggsSB, ZongNC, WangD, StefaniE, PingP (2012) Posttranslational modification of cardiac proteasomes: functional delineation enabled by proteomics.Am J Physiol Heart Circ Physiol303:H9–18
|
125 |
ShaZ, PethA, GoldbergAL (2011) Keeping proteasomes under control—a role for phosphorylation in the nucleus.Proc Natl Acad Sci USA108:18573–18574
|
126 |
SharmaK, D’SouzaRC, TyanovaS, SchaabC, WisniewskiJR, CoxJ, MannM (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.Cell Rep8:1583–1594
|
127 |
ShiY, ChenX, ElsasserS, StocksBB, TianG, LeeBH, ShiY, ZhangN, de PootSA, TuebingF
|
128 |
SmithDM, KafriG, ChengY, NgD, WalzT, GoldbergAL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.Mol Cell20:687–698
|
129 |
SmithDM, ChangSC, ParkS, FinleyD, ChengY, GoldbergAL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry.Mol Cell27:731–744
|
130 |
StadtmuellerBM, HillCP (2011) Proteasome activators.Mol Cell41:8–19
|
131 |
StokesMP, RushJ, MacneillJ, RenJM, SprottK, NardoneJ, YangV, BeausoleilSA, GygiSP, LivingstoneM
|
132 |
TaipaleM, KrykbaevaI, KoevaM, KayatekinC, WestoverKD, KarrasGI, LindquistS (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition.Cell150:987–1001
|
133 |
TanCS, PasculescuA, LimWA, PawsonT, BaderGD, LindingR (2009) Positive selection of tyrosine loss in metazoan evolution.Science325:1686–1688
|
134 |
TrostM, SauvageauM, HeraultO, DelerisP, PomiesC, ChagraouiJ, MayotteN, MelocheS, SauvageauG, ThibaultP (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia.Blood120:e17–27
|
135 |
TsaiCF, WangYT, YenHY, TsouCC, KuWC, LinPY, ChenHY, NesvizhskiiAI, IshihamaY, ChenYJ (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.Nat Commun6:6622
|
136 |
UechiH, HamazakiJ, MurataS (2014) Characterization of the testisspecific proteasome subunit alpha4s in mammals.J Biol Chem289:12365–12374
|
137 |
UmJW, ImE, ParkJ, OhY, MinB, LeeHJ, YoonJB, ChungKC (2010) ASK1 negatively regulates the 26 S proteasome.J Biol Chem285:36434–36446
|
138 |
UmedaM, ManabeY, UchimiyaH (1997) Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.).FEBS Lett403:313–317
|
139 |
UnnoM, MizushimaT, MorimotoY, TomisugiY, TanakaK, YasuokaN, TsukiharaT (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution.Structure10:609–618
|
140 |
UnverdorbenP, BeckF, SledzP, SchweitzerA, PfeiferG, PlitzkoJM, BaumeisterW, ForsterF (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome.Proc Natl Acad Sci USA111:5544–5549
|
141 |
van de WeerdtBC, MedemaRH (2006) Polo-like kinases: a team in control of the division.Cell Cycle5:853–864
|
142 |
VermaR, AravindL, OaniaR, McDonaldWH, YatesJR 3rd, KooninEV, DeshaiesRJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome.Science298:611–615
|
143 |
VianaR, AguadoC, EstebanI, MorenoD, ViolletB, KnechtE, SanzP (2008) Role of AMP-activated protein kinase in autophagy and proteasome function.Biochem Biophys Res Commun369: 964–968
|
144 |
WangX, HuangL (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry.Mol Cell Proteomics7:46–57
|
145 |
WangX, ChenCF, BakerPR, ChenPL, KaiserP, HuangL (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex.Biochemistry46:3553–3565
|
146 |
WangS, ZhangM, LiangB, XuJ, XieZ, LiuC, ViolletB, YanD, ZouMH (2010) AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.Circ Res106: 1117–1128
|
147 |
WangR, FerrarisJD, IzumiY, DmitrievaN, RamkissoonK, WangG, GucekM, BurgMB (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation.Am J Physiol Cell Physiol307:C442–454
|
148 |
WaniPS, SuppahiaA, CapallaX, OndracekA, RoelofsJ (2016) Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29.Sci Rep6:27873
|
149 |
WaxmanL, FaganJM, GoldbergAL (1987) Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates.J Biol Chem262:2451–2457
|
150 |
WeintzG, OlsenJV, FruhaufK, NiedzielskaM, AmitI, JantschJ, MagesJ, FrechC, DolkenL, MannM
|
151 |
WilliamsGR, BethardJR, BerkawMN, NagelAK, LuttrellLM, BallLE (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics.Methods92:36–50
|
152 |
WordenEJ, PadovaniC, MartinA (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation.Nat Struct Mol Biol21:220–227
|
153 |
WuR, HaasW, DephoureN, HuttlinEL, ZhaiB, SowaME, GygiSP (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries.Nat Methods8:677–683
|
154 |
WuX, TianL, LiJ, ZhangY, HanV, LiY, XuX, LiH, ChenX, ChenJ
|
155 |
XuJ, WangAH, Oses-PrietoJ, MakhijaniK, KatsunoY, PeiM, YanL, ZhengYG, BurlingameA, BrucknerK
|
156 |
YanoM, MoriS, KidoH (1999) Intrinsic nucleoside diphosphate kinase-like activity is a novel function of the 20 S proteasome.J Biol Chem274:34375–34382
|
157 |
YaoT, CohenRE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome.Nature419:403–407
|
158 |
YuY, SmithDM, KimHM, RodriguezV, GoldbergAL, ChengY (2010) Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions.Embo J29:692–702
|
159 |
YuanF, MaY, YouP, LinW, LuH, YuY, WangX, JiangJ, YangP, MaQ
|
160 |
ZhangW, WeiQ (2011) Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6.Biochem Biophys Res Commun407:668–673
|
161 |
ZhangF, HuY, HuangP, TolemanCA, PatersonAJ, KudlowJE (2007a) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6.J Biol Chem282:22460–22471
|
162 |
ZhangF, PatersonAJ, HuangP, WangK, KudlowJE (2007b) Metabolic control of proteasome function.Physiology (Bethesda)22:373–379
|
163 |
ZongC, GomesAV, DrewsO, LiX, YoungGW, BerhaneB, QiaoX, FrenchSW, Bardag-GorceF, PingP (2006) Regulation of murine cardiac 20S proteasomes: role of associating partners.Circ Res99:372–380
|
/
〈 | 〉 |