REVIEW

Reversible phosphorylation of the 26S proteasome

  • Xing Guo , 1 ,
  • Xiuliang Huang 2 ,
  • Mark J. Chen 3
Expand
  • 1. The Life Sciences Institute of Zhejiang University, Hangzhou 310058, China
  • 2. Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
  • 3. Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA

Received date: 15 Dec 2016

Accepted date: 26 Jan 2017

Published date: 19 May 2017

Copyright

2017 The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn

Abstract

The 26S proteasome at the center of the ubiquitinproteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.

Cite this article

Xing Guo , Xiuliang Huang , Mark J. Chen . Reversible phosphorylation of the 26S proteasome[J]. Protein & Cell, 2017 , 8(4) : 255 -272 . DOI: 10.1007/s13238-017-0382-x

1
AsaiM, TsukamotoO, MinaminoT, AsanumaH, FujitaM, AsanoY, TakahamaH, SasakiH, HigoS, AsakuraM (2009) PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts.J Mol Cell Cardiol46:452–462

DOI

2
AsanoS, FukudaY, BeckF, AufderheideA, ForsterF, DanevR, BaumeisterW (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons.Science347:439–442

DOI

3
BaiY, LiJ, FangB, EdwardsA, ZhangG, BuiM, EschrichS, AltiokS, KoomenJ, HauraEB (2012) Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors.Cancer Res72:2501–2511

DOI

4
Bardag-GorceF, VenkateshR, LiJ, FrenchBA, FrenchSW (2004) Hyperphosphorylation of rat liver proteasome subunits: the effects of ethanol and okadaic acid are compared.Life Sci75:585–597

DOI

5
BeausoleilSA, VillenJ, GerberSA, RushJ, GygiSP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization.Nat Biotechnol24: 1285–1292

DOI

6
BeckerW (2012) Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control.Cell Cycle11:3389–3394

DOI

7
BenedictCM, ClawsonGA (1996) Nuclear multicatalytic proteinase subunit RRC3 is important for growth regulation in hepatocytes.Biochemistry35:11612–11621

DOI

8
BianY, LiL, DongM, LiuX, KanekoT, ChengK, LiuH, VossC, CaoX, WangY (2016) Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder.Nat Chem Biol12:959–966

DOI

9
BingolB, SchumanEM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines.Nature441:1144–1148

DOI

10
BingolB, ShengM (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease.Neuron69:22–32

DOI

11
BingolB, WangC-F, ArnottD, ChengD, PengJ, ShengM (2010) Autophosphorylated CaMKIIα acts as a Scaffold to recruit proteasomes to dendritic spines.Cell140:567–578

DOI

12
BoseS, BrooksP, MasonGG, RivettAJ (2001) gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation.Biochem J353:291–297

13
BoseS, StratfordFL, BroadfootKI, MasonGG, RivettAJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon.Biochem J378:177–184

DOI

14
BrillLM, XiongW, LeeKB, FicarroSB, CrainA, XuY, TerskikhA, SnyderEY, DingS (2009) Phosphoproteomic analysis of human embryonic stem cells.Cell Stem Cell5:204–213

DOI

15
CastanoJG, MahilloE, AriztiP, ArribasJ (1996) Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis.Biochemistry35:3782–3789

DOI

16
ChenS, WuJ, LuY, MaYB, LeeBH, YuZ, OuyangQ, FinleyDJ, KirschnerMW, MaoY(2016) Structural basis for dynamic regulation of the human 26S proteasome.Proc Natl Acad Sci USA113:12991–12996

DOI

17
ChouTF, DeshaiesRJ (2011) Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system.J Biol Chem286:16546–16554

DOI

18
ChoudharyC, OlsenJV, BrandtsC, CoxJ, ReddyPN, BohmerFD, GerkeV, Schmidt-ArrasDE, BerdelWE, Muller-TidowC (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.Mol Cell36:326–339

DOI

19
CuiZ, ScruggsSB, GildaJE, PingP, GomesAV (2014) Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond.J Mol Cell Cardiol71:32–42

DOI

20
DephoureN, ZhouC, VillenJ, BeausoleilSA, BakalarskiCE, ElledgeSJ, GygiSP (2008) A quantitative atlas of mitotic phosphorylation.Proc Natl Acad Sci USA105:10762–10767

DOI

21
DeverauxQ, JensenC, RechsteinerM (1995) Molecular cloning and expression of a 26 S protease subunit enriched in dileucine repeats.J Biol Chem270:23726–23729

DOI

22
DjakovicSN, SchwarzLA, BarylkoB, DeMartinoGN, PatrickGN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.J Biol Chem284:26655–26665

DOI

23
DjakovicSN, Marquez-LonaEM, JakawichSK, WrightR, ChuC, SuttonMA, PatrickGN (2012) Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons.J Neurosci32:5126–5131

DOI

24
DjuranovicS, HartmannMD, HabeckM, UrsinusA, ZwicklP, MartinJ, LupasAN, ZethK (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.Mol Cell34:580–590

DOI

25
DrakeJM, GrahamNA, StoyanovaT, SedghiA, GoldsteinAS, CaiH, SmithDA, ZhangH, KomisopoulouE, HuangJ (2012) Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression.Proc Natl Acad Sci USA109:1643–1648

DOI

26
DullaK, DaubH, HornbergerR, NiggEA, KornerR (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression.Mol Cell Proteomics9:1167–1181

DOI

27
EangR, Girbal-NeuhauserE, XuB, GairinJE (2009) Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines.Fundam Clin Pharmacol23:215–224

DOI

28
EhlersMD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.Nat Neurosci6:231–242

DOI

29
EhlingerA, WaltersKJ (2013) Structural insights into proteasome activationby the19Sregulatory particle.Biochemistry52:3618–3628

DOI

30
FengY, LongoDL, FerrisDK (2001) Polo-like kinase interacts with proteasomes and regulates their activity.Cell Growth Differ12:29–37

31
FinleyD (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome.Annu Rev Biochem78:477–513

DOI

32
FinleyD, ChenX, WaltersKJ (2016) Gates, channels, and switches: elements of the proteasome machine.Trends Biochem Sci41:77–93

DOI

33
FranchinC, CesaroL, SalviM, MillioniR, IoriE, CifaniP, JamesP, ArrigoniG, PinnaL (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells.Biochim Biophys Acta1854:609–623

DOI

34
FuhsSR, MeisenhelderJ, AslanianA, MaL, ZagorskaA, StankovaM, BinnieA, Al-ObeidiF, MaugerJ, LemkeG (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation.Cell162:198–210

DOI

35
FunakoshiM, TomkoRJ Jr, KobayashiH, HochstrasserM (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.Cell137:887–899

DOI

36
GerschM, HacklMW, DubiellaC, DobrinevskiA, GrollM, SieberSA (2015) A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, and inhibitor binding.Chem Biol22:404–411

DOI

37
GilletteTG, HillJA (2013) PKG primes the proteasome.Circulation128:325–327

DOI

38
GnadF, YoungA, ZhouW, LyleK, OngCC, StokesMP, SilvaJC, BelvinM, FriedmanLS, KoeppenH (2013) Systems-wide analysis of K-Ras, Cdc42, and PAK4 signaling by quantitative phosphoproteomics.Mol Cell Proteomics12:2070–2080

DOI

39
GoswamiT, LiX, SmithAM, LuderowskiEM, VincentJJ, RushJ, BallifBA (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain.Proteomics12:2185–2189

DOI

40
GrollM, DitzelL, LoweJ, StockD, BochtlerM, BartunikHD, HuberR (1997) Structure of 20S proteasome from yeast at 2.4 A resolution.Nature386:463–471

DOI

41
Grosstessner-HainK, HegemannB, NovatchkovaM, RamesederJ, JoughinBA, HudeczO, RoitingerE, PichlerP, KrautN, YaffeMB (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome.Mol Cell Proteomics10(M111):008540

DOI

42
GuTL, GossVL, ReevesC, PopovaL, NardoneJ, MacneillJ, WaltersDK, WangY, RushJ, CombMJ (2006) Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia.Blood108:4202–4204

DOI

43
GuoX, DixonJE (2016) The 26S proteasome: a cell cycle regulator regulated by cell cycle.Cell Cycle15:875–876

DOI

44
GuoA, VillenJ, KornhauserJ, LeeKA, StokesMP, RikovaK, PossematoA, NardoneJ, InnocentiG, WetzelR (2008) Signaling networks assembled by oncogenic EGFR and c-Met.Proc Natl Acad Sci USA105:692–697

DOI

45
GuoX, EngelJL, XiaoJ, TagliabracciVS, WangX, HuangL, DixonJE (2011) UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity.Proc Natl Acad Sci USA108:18649–18654

DOI

46
GuoX, WangX, WangZ, BanerjeeS, YangJ, HuangL, DixonJE (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis.Nat Cell Biol18:202–212

DOI

47
HaassC, KloetzelPM (1989) The Drosophila proteasome undergoes changes in its subunit pattern during development.Exp Cell Res180:243–252

DOI

48
HamiltonAM, OhWC, Vega-RamirezH, SteinIS, HellJW, PatrickGN, ZitoK (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome.Neuron74:1023–1030

DOI

49
HeY, GuoX, YuZH, WuL, GunawanAM, ZhangY, DixonJE, ZhangZY (2015) A potent and selective inhibitor for the UBLCP1 proteasome phosphatase.Bioorg Med Chem23:2798–2809

DOI

50
HoellerD, DikicI (2009) Targeting the ubiquitin system in cancer therapy.Nature458:438–444

DOI

51
HoltLJ, TuchBB, VillenJ, JohnsonAD, GygiSP, MorganDO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.Science325:1682–1686

DOI

52
HoughR, PrattG, RechsteinerM (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate.J Biol Chem262:8303–8313

53
HowardCJ, Hanson-SmithV, KennedyKJ, MillerCJ, LouHJ, JohnsonAD, TurkBE, HoltLJ (2014) Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity.Elife3:e04126

DOI

54
HuangX, LuanB, WuJ, ShiY (2016) An atomic structure of the human 26S proteasome.Nat Struct Mol Biol23:778–785

DOI

55
HuibregtseJM, MatouschekA (2016) Ramping up degradation for proliferation.Nat Cell Biol18:141–142

DOI

56
HunterT, SeftonBM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine.Proc Natl Acad Sci USA77:1311–1315

DOI

57
HusnjakK, ElsasserS, ZhangN, ChenX, RandlesL, ShiY, HofmannK, WaltersKJ, FinleyD, DikicI (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor.Nature453:481–488

DOI

58
IliukAB, MartinVA, AlicieBM, GeahlenRL, TaoWA (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers.Mol Cell Proteomics9:2162–2172

DOI

59
ImamiK, SugiyamaN, ImamuraH, WakabayashiM, TomitaM, TaniguchiM, UenoT, ToiM, IshihamaY (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways.Mol Cell Proteomics11:1741–1757

DOI

60
JaromeTJ, KwapisJL, RuenzelWL, HelmstetterFJ (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories.Front Behav Neurosci7:115

DOI

61
JaromeTJ, FerraraNC, KwapisJL, HelmstetterFJ (2016) CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval.Neurobiol Learn Mem128:103–109

DOI

62
JohnsonH, Del RosarioAM, BrysonBD, SchroederMA, SarkariaJN, WhiteFM (2012) Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.Mol Cell Proteomics11:1724–1740

DOI

63
KanekoT, HamazakiJ, IemuraS, SasakiK, FuruyamaK, NatsumeT, TanakaK, MurataS (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones.Cell137:914–925

DOI

64
KettenbachAN, SchweppeDK, FahertyBK, PechenickD, PletnevAA, GerberSA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells.Sci Signal4:rs5

DOI

65
KikuchiJ, IwafuneY, AkiyamaT, OkayamaA, NakamuraH, ArakawaN, KimuraY, HiranoH (2010) Co- and post-translational modifications of the 26S proteasome in yeast.Proteomics10:2769–2779

DOI

66
KimBG, LeeJH, AhnJM, ParkSK, ChoJH, HwangD, YooJS, YatesJR III, RyooHM, ChoJY(2009) ‘Two-stage doubletechnique hybrid (TSDTH)’ identification strategy for the analysis of BMP2-induced transdifferentiation of premyoblast C2C12 cells to osteoblast.J Proteome Res8:4441–4454

DOI

67
KloetzelPM (2001) Antigen processing by the proteasome.Nat Rev Mol Cell Biol2:179–187

DOI

68
LeeBH, LeeMJ, ParkS, OhDC, ElsasserS, ChenPC, GartnerC, DimovaN, HannaJ, GygiSP (2010a) Enhancement of proteasome activity by a small-molecule inhibitor of USP14.Nature467:179–184

DOI

69
LeeSH, ParkY, YoonSK, YoonJB (2010b) Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.J Biol Chem285:41280–41289

DOI

70
LiN, ZhangZ, ZhangW, WeiQ (2011) Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1alpha activity via the proteasome pathway.Biochem Biophys Res Commun405:468–472

DOI

71
LiD, DongQ, TaoQ, GuJ, CuiY, JiangX, YuanJ, LiW, XuR, JinY (2015) c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit.Cell Rep10:484–496

DOI

72
LiJ, WilkinsonB, ClementelVA, HouJ, O’DellTJ, CobaMP (2016) Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome.Sci Signal9:rs8

DOI

73
LinJT, ChangWC, ChenHM, LaiHL, ChenCY, TaoMH, ChernY (2013) Regulation of feedback between protein kinase A and the proteasome system worsens Huntington’s disease.Mol Cell Biol33:1073–1084

DOI

74
LiuX, HuangW, LiC, LiP, YuanJ, LiX, QiuXB, MaQ, CaoC(2006) Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation.Mol Cell22:317–327

DOI

75
LivnehI, Cohen-KaplanV, Cohen-RosenzweigC, AvniN, CiechanoverA (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death.Cell Res26:869–885

DOI

76
LokireddyS, KukushkinNV, GoldbergAL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins.Proc Natl Acad Sci USA112:E7176–7185

DOI

77
LoweryDM, ClauserKR, HjerrildM, LimD, AlexanderJ, KishiK, OngSE, GammeltoftS, CarrSA, YaffeMB (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate.Embo J26:2262–2273

DOI

78
LuH, ZongC, WangY, YoungGW, DengN, SoudaP, LiX, WhiteleggeJ, DrewsO, YangPY (2008) Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach.Mol Cell Proteomics7:2073–2089

DOI

79
LuY, LeeBH, KingRW, FinleyD, KirschnerMW (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis.Science348:1250834

DOI

80
LudemannR, LereaKM, EtlingerJD (1993) Copurification of casein kinase II with 20 S proteasomes and phosphorylation of a 30-kDa proteasome subunit.J Biol Chem268:17413–17417

81
LundbyA, AndersenMN, SteffensenAB, HornH, KelstrupCD, FrancavillaC, JensenLJ, SchmittN, ThomsenMB, OlsenJV (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling.Sci Signal6:rs11

DOI

82
LuoW, SlebosRJ, HillS, LiM, BrabekJ, AmanchyR, ChaerkadyR, PandeyA, HamAJ, HanksSK (2008) Global impact of oncogenic Src on a phosphotyrosine proteome.J Proteome Res7:3447–3460

DOI

83
ManningG, WhyteDB, MartinezR, HunterT, SudarsanamS (2002) The protein kinase complement of the human genome.Science298:1912–1934

DOI

84
MarambaudP, WilkS, CheclerF (1996) Protein kinase A phosphorylation of the proteasome: a contribution to the alpha-secretase pathway in human cells.J Neurochem67:2616–2619

DOI

85
MasonGG, HendilKB, RivettAJ (1996) Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity.Eur J Biochem238:453–462

DOI

86
MasonGG, MurrayRZ, PappinD, RivettAJ (1998) Phosphorylation of ATPase subunits of the 26S proteasome.FEBS Lett430: 269–274

DOI

87
MatsuokaS, BallifBA, SmogorzewskaA, McDonaldER 3rd, HurovKE, LuoJ, BakalarskiCE, ZhaoZ, SoliminiN, LerenthalY (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.Science316:1160–1166

DOI

88
MatyskielaME, LanderGC, MartinA (2013) Conformational switching of the 26S proteasome enables substrate degradation.Nat Struct Mol Biol20:781–788

DOI

89
MayyaV, LundgrenDH, HwangSI, RezaulK, WuL, EngJK, RodionovV, HanDK (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.Sci Signal2:ra46

DOI

90
MertinsP, YangF, LiuT, ManiDR, PetyukVA, GilletteMA, ClauserKR, QiaoJW, GritsenkoMA, MooreRJ (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels.Mol Cell Proteomics13:1690–1704

DOI

91
MorenoD, KnechtE, ViolletB, SanzP (2008) A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism.FEBS Lett582:2650–2654

DOI

92
MurataS, SasakiK, KishimotoT, NiwaS, HayashiH, TakahamaY, TanakaK (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes.Science316:1349–1353

DOI

93
MurataS, YashirodaH, TanakaK (2009) Molecular mechanisms of proteasome assembly.Nat Rev Mol Cell Biol10:104–115

DOI

94
MurrayPF, PardoPS, ZeladaAM, PasseronS (2002) In vivo and in vitro phosphorylation of Candida albicans 20S proteasome.Arch Biochem Biophys404:116–125

DOI

95
MyekuN, WangH, Figueiredo-PereiraME (2012) cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.Neurosci Lett527:126–131

DOI

96
MyekuN, ClellandCL, EmraniS, KukushkinNV, YuWH, GoldbergAL, DuffKE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling.Nat Med22:46–53

DOI

97
NaganoK, ShinkawaT, MutohH, KondohO, MorimotoS, InomataN, AshiharaM, IshiiN, AokiY, HaramuraM (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.Proteomics9:2861–2874

DOI

98
OlsenJV, BlagoevB, GnadF, MacekB, KumarC, MortensenP, MannM (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.Cell127:635–648

DOI

99
OlsenJV, VermeulenM, SantamariaA, KumarC, MillerML, JensenLJ, GnadF, CoxJ, JensenTS, NiggEA (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.Sci Signal3:ra3

DOI

100
PackCG, YukiiH, Toh-eA, KudoT, TsuchiyaH, KaihoA, SakataE, MurataS, YokosawaH, SakoY (2014) Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome.Nat Commun5:3396

DOI

101
PanC, OlsenJV, DaubH, MannM (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics.Mol Cell Proteomics8:2796–2808

DOI

102
PardoPS, MurrayPF,WalzK, FrancoL, PasseronS(1998) In vivo and in vitro phosphorylation of the alpha 7/PRS1 subunit of Saccharomyces cerevisiae 20 S proteasome: in vitro phosphorylation by protein kinase CK2 is absolutely dependent on polylysine.Arch Biochem Biophys349:397–401

DOI

103
ParkS, RoelofsJ, KimW, RobertJ, SchmidtM, GygiSP, FinleyD (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini.Nature459:866–870

DOI

104
PereiraME, WilkS (1990) Phosphorylation of the multicatalytic proteinase complex from bovine pituitaries by a copurifying cAMP-dependent protein kinase.Arch Biochem Biophys283:68–74

DOI

105
PethA, KukushkinN, BosseM, GoldbergAL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs.J Biol Chem288:7781–7790

DOI

106
PetroccaF, AltschulerG, TanSM, MendilloML, YanH, JerryDJ, KungAL, HideW, InceTA, LiebermanJ (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells.Cancer Cell24:182–196

DOI

107
RablJ, SmithDM, YuY, ChangSC, GoldbergAL, ChengY (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases.Mol Cell30:360–368

DOI

108
RainerPP, KassDA (2016) Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G.Cardiovasc Res111:154–162

DOI

109
RanekMJ, TerpstraEJ, LiJ, KassDA, WangX (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins.Circulation128:365–376

DOI

110
RigboltKT, ProkhorovaTA, AkimovV, HenningsenJ, JohansenPT, KratchmarovaI, KassemM, MannM, OlsenJV, BlagoevB (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation.Sci Signal4:rs3

DOI

111
RikovaK, GuoA, ZengQ, PossematoA, YuJ, HaackH, NardoneJ, LeeK, ReevesC, LiY (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.Cell131:1190–1203

DOI

112
RivettJA, BoseS, BrooksP, BroadfootKI (2001) Regulation of proteasome complexes by γ-interferon and phosphorylation.Biochimie83:363–366

DOI

113
RoelofsJ, ParkS, HaasW, TianG, McAllisterFE, HuoY, LeeBH, ZhangF, ShiY, GygiSP (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly.Nature459:861–865

DOI

114
RuperezP, Gago-MartinezA, BurlingameAL, Oses-PrietoJA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells.Mol Cell Proteomics11:171–186

DOI

115
RushJ, MoritzA, LeeKA, GuoA, GossVL, SpekEJ, ZhangH, ZhaXM, PolakiewiczRD, CombMJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.Nat Biotechnol23:94–101

DOI

116
SantamariaA, WangB, EloweS, MalikR, ZhangF, BauerM, SchmidtA, SilljeHH, KornerR, NiggEA (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle.Mol Cell Proteomics10(M110):004457

DOI

117
SantariusT, ShipleyJ, BrewerD, StrattonMR, CooperCS (2010) A census of amplified and overexpressed human cancer genes.Nat Rev Cancer10:59–64

DOI

118
SatohK, NishikawaT, YokosawaH, SawadaH (1995) Phosphorylation of proteasome substrate by a protein kinase associated with the 26 S proteasome is linked to the ATP-dependent proteolysis of the 26 S proteasome.Biochem Biophys Res Commun213:7–14

DOI

119
SatohK, SasajimaH, NyoumuraK-I, YokosawaH, SawadaH (2000) Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit.Biochemistry40:314–319

DOI

120
SchmidtM, FinleyD (2014) Regulation of proteasome activity in health and disease.Biochim Biophys Acta1843:13–25

DOI

121
SchmidtF, DahlmannB, HustoftHK, KoehlerCJ, StrozynskiM, KlossA, Zimny-ArndtU, JungblutPR, ThiedeB (2011) Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells.Amino Acids41:351–361

DOI

122
SchreinerP, ChenX, HusnjakK, RandlesL, ZhangN, ElsasserS, FinleyD, DikicI, WaltersKJ, GrollM (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.Nature453:548–552

DOI

123
SchweitzerA, AufderheideA, RudackT, BeckF, PfeiferG, PlitzkoJM, SakataE, SchultenK, ForsterF, BaumeisterW (2016) Structure of the human 26S proteasome at a resolution of 3.9 A.Proc Natl Acad Sci USA113:7816–7821

DOI

124
ScruggsSB, ZongNC, WangD, StefaniE, PingP (2012) Posttranslational modification of cardiac proteasomes: functional delineation enabled by proteomics.Am J Physiol Heart Circ Physiol303:H9–18

DOI

125
ShaZ, PethA, GoldbergAL (2011) Keeping proteasomes under control—a role for phosphorylation in the nucleus.Proc Natl Acad Sci USA108:18573–18574

DOI

126
SharmaK, D’SouzaRC, TyanovaS, SchaabC, WisniewskiJR, CoxJ, MannM (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.Cell Rep8:1583–1594

DOI

127
ShiY, ChenX, ElsasserS, StocksBB, TianG, LeeBH, ShiY, ZhangN, de PootSA, TuebingF (2016)Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome.Science.

DOI

128
SmithDM, KafriG, ChengY, NgD, WalzT, GoldbergAL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.Mol Cell20:687–698

DOI

129
SmithDM, ChangSC, ParkS, FinleyD, ChengY, GoldbergAL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry.Mol Cell27:731–744

DOI

130
StadtmuellerBM, HillCP (2011) Proteasome activators.Mol Cell41:8–19

DOI

131
StokesMP, RushJ, MacneillJ, RenJM, SprottK, NardoneJ, YangV, BeausoleilSA, GygiSP, LivingstoneM (2007) Profiling of UV-induced ATM/ATR signaling pathways.Proc Natl Acad Sci USA104:19855–19860

DOI

132
TaipaleM, KrykbaevaI, KoevaM, KayatekinC, WestoverKD, KarrasGI, LindquistS (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition.Cell150:987–1001

DOI

133
TanCS, PasculescuA, LimWA, PawsonT, BaderGD, LindingR (2009) Positive selection of tyrosine loss in metazoan evolution.Science325:1686–1688

DOI

134
TrostM, SauvageauM, HeraultO, DelerisP, PomiesC, ChagraouiJ, MayotteN, MelocheS, SauvageauG, ThibaultP (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia.Blood120:e17–27

DOI

135
TsaiCF, WangYT, YenHY, TsouCC, KuWC, LinPY, ChenHY, NesvizhskiiAI, IshihamaY, ChenYJ (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.Nat Commun6:6622

DOI

136
UechiH, HamazakiJ, MurataS (2014) Characterization of the testisspecific proteasome subunit alpha4s in mammals.J Biol Chem289:12365–12374

DOI

137
UmJW, ImE, ParkJ, OhY, MinB, LeeHJ, YoonJB, ChungKC (2010) ASK1 negatively regulates the 26 S proteasome.J Biol Chem285:36434–36446

DOI

138
UmedaM, ManabeY, UchimiyaH (1997) Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.).FEBS Lett403:313–317

DOI

139
UnnoM, MizushimaT, MorimotoY, TomisugiY, TanakaK, YasuokaN, TsukiharaT (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution.Structure10:609–618

DOI

140
UnverdorbenP, BeckF, SledzP, SchweitzerA, PfeiferG, PlitzkoJM, BaumeisterW, ForsterF (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome.Proc Natl Acad Sci USA111:5544–5549

DOI

141
van de WeerdtBC, MedemaRH (2006) Polo-like kinases: a team in control of the division.Cell Cycle5:853–864

DOI

142
VermaR, AravindL, OaniaR, McDonaldWH, YatesJR 3rd, KooninEV, DeshaiesRJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome.Science298:611–615

DOI

143
VianaR, AguadoC, EstebanI, MorenoD, ViolletB, KnechtE, SanzP (2008) Role of AMP-activated protein kinase in autophagy and proteasome function.Biochem Biophys Res Commun369: 964–968

DOI

144
WangX, HuangL (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry.Mol Cell Proteomics7:46–57

DOI

145
WangX, ChenCF, BakerPR, ChenPL, KaiserP, HuangL (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex.Biochemistry46:3553–3565

DOI

146
WangS, ZhangM, LiangB, XuJ, XieZ, LiuC, ViolletB, YanD, ZouMH (2010) AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.Circ Res106: 1117–1128

DOI

147
WangR, FerrarisJD, IzumiY, DmitrievaN, RamkissoonK, WangG, GucekM, BurgMB (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation.Am J Physiol Cell Physiol307:C442–454

DOI

148
WaniPS, SuppahiaA, CapallaX, OndracekA, RoelofsJ (2016) Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29.Sci Rep6:27873

DOI

149
WaxmanL, FaganJM, GoldbergAL (1987) Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates.J Biol Chem262:2451–2457

150
WeintzG, OlsenJV, FruhaufK, NiedzielskaM, AmitI, JantschJ, MagesJ, FrechC, DolkenL, MannM (2010) The phosphoproteome of toll-like receptor-activated macrophages.Mol Syst Biol6:371

DOI

151
WilliamsGR, BethardJR, BerkawMN, NagelAK, LuttrellLM, BallLE (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics.Methods92:36–50

DOI

152
WordenEJ, PadovaniC, MartinA (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation.Nat Struct Mol Biol21:220–227

DOI

153
WuR, HaasW, DephoureN, HuttlinEL, ZhaiB, SowaME, GygiSP (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries.Nat Methods8:677–683

DOI

154
WuX, TianL, LiJ, ZhangY, HanV, LiY, XuX, LiH, ChenX, ChenJ (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.Mol Cell Proteomics11:1640–1651

DOI

155
XuJ, WangAH, Oses-PrietoJ, MakhijaniK, KatsunoY, PeiM, YanL, ZhengYG, BurlingameA, BrucknerK (2013) Arginine methylation initiates BMP-induced Smad signaling.Mol Cell51:5–19

DOI

156
YanoM, MoriS, KidoH (1999) Intrinsic nucleoside diphosphate kinase-like activity is a novel function of the 20 S proteasome.J Biol Chem274:34375–34382

DOI

157
YaoT, CohenRE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome.Nature419:403–407

DOI

158
YuY, SmithDM, KimHM, RodriguezV, GoldbergAL, ChengY (2010) Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions.Embo J29:692–702

DOI

159
YuanF, MaY, YouP, LinW, LuH, YuY, WangX, JiangJ, YangP, MaQ (2013) A novel role of proteasomal beta1 subunit in tumorigenesis.Biosci Rep33:e0050

DOI

160
ZhangW, WeiQ (2011) Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6.Biochem Biophys Res Commun407:668–673

DOI

161
ZhangF, HuY, HuangP, TolemanCA, PatersonAJ, KudlowJE (2007a) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6.J Biol Chem282:22460–22471

DOI

162
ZhangF, PatersonAJ, HuangP, WangK, KudlowJE (2007b) Metabolic control of proteasome function.Physiology (Bethesda)22:373–379

DOI

163
ZongC, GomesAV, DrewsO, LiX, YoungGW, BerhaneB, QiaoX, FrenchSW, Bardag-GorceF, PingP (2006) Regulation of murine cardiac 20S proteasomes: role of associating partners.Circ Res99:372–380

DOI

Outlines

/