RESEARCH ARTICLE

A new method for quantifying mitochondrial axonal transport

  • Mengmeng Chen 1,4 ,
  • Yang Li , 2,4 ,
  • Mengxue Yang 1,4 ,
  • Xiaoping Chen 4 ,
  • Yemeng Chen 2 ,
  • Fan Yang 2 ,
  • Sheng Lu 2 ,
  • Shengyu Yao 4 ,
  • Timothy Zhou 4 ,
  • Jianghong Liu 3 ,
  • Li Zhu 3 ,
  • Sidan Du 2 ,
  • Jane Y. Wu , 3,4
Expand
  • 1. University of Chinese Academy of Sciences, Beijing 100049, China
  • 2. School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China
  • 3. State Key Laboratory for Brain & Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 4. Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA

Received date: 16 Mar 2016

Accepted date: 31 Mar 2016

Published date: 28 Nov 2016

Copyright

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn

Abstract

Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named “MitoQuant”. This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.

Cite this article

Mengmeng Chen , Yang Li , Mengxue Yang , Xiaoping Chen , Yemeng Chen , Fan Yang , Sheng Lu , Shengyu Yao , Timothy Zhou , Jianghong Liu , Li Zhu , Sidan Du , Jane Y. Wu . A new method for quantifying mitochondrial axonal transport[J]. Protein & Cell, 2016 , 7(11) : 804 -819 . DOI: 10.1007/s13238-016-0268-3

1
Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206:655–670

DOI

2
Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L, Bennett JP Jr (2008) Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21

DOI

3
Bros H, Hauser A, Paul F, Niesner R, Infante-Duarte C (2015) Assessing mitochondrial movement within neurons: manual versus automated tracking methods. Traffic 16(8):906–917

DOI

4
Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. Comput Vis Pattern Recognit 2:60–65

DOI

5
Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

DOI

6
Chang DT, Honick AS, Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26:7035–7045

DOI

7
Chen Y, Yang M, Deng J, Chen X, Ye Y, Zhu L, Liu J, Ye H, Shen Y, Li Y, Rao EJ, Fushimi K, Zhou X, Bigio EH, Mesulam M, Xu Q, Wu JY (2011) Expression of human FUS protein in Drosophila leads to progressive neurodegeneration. Protein Cell 2(6):477–486

DOI

8
Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104:13666–13671

DOI

9
Deng J, Yang M, Chen Y, Chen X, Liu J, Sun S, Cheng H, Li Y, Bigio EH, Mesulam M (2015) FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet 11:e1005357

DOI

10
Devine MJ, Birsa N, Kittler JT (2015) Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis S0969–9961(15):30110–30118

11
Fukami JI, Yamamoto I, Casida JE (1967) Metabolism of rotenone in vitro by tissue homogenates from mammals and insects. Science 155(3763):713–716

DOI

12
Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9(Suppl 2):S59–S64

DOI

13
Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, Rao EJ, Yang M, Ye H, Zhu L, Liu J, Xu M, Yang Y, Wang C, Zhang D, Bigio EH, Mesulam M, Shen Y, Xu Q, Fushimi K, Wu JY (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18(7):822–830

DOI

14
Hollenbeck M, Grabensee B (1993) Hemolytic-uremic syndrome and thrombotic thrombocytopenic purpura in the adult. Deutsche medizinische Wochenschrift 118:69–75

DOI

15
Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

DOI

16
Huang C, Zhou H, Tong J, Chen H, Liu YJ (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet 7: e1002011

DOI

17
Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35

DOI

18
Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148

DOI

19
Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

DOI

20
Lanson NA Jr, Maltare A, King H, Smith R, Kim JH (2011) A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 20:2510–2523

DOI

21
Li Y, Yang M, Huang Z, Chen X, Maloney MT, Zhu L, Liu J, Yang Y, Du S, Jiang X, Wu JY (2014) AxonQuant: a microfluidic chamber culture-coupled algorithm that allows high-throughput quantification of axonal damage. Neurosignals 22(1):14–29

DOI

22
Lin MY, Sheng ZH (2015) Regulation of mitochondrial transport in neurons. Exp Cell Res 334:35–44

DOI

23
Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8:e1002537

DOI

24
Mackenzie IR, Munoz DG, Kusaka H, Yokota O, Ishihara K (2011) Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 121:207–218

DOI

25
Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

DOI

26
Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117(13):2791–2804

DOI

27
Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326

DOI

28
Muller MJ, Klumpp S, Lipowsky R (2008) Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci USA 105:4609–4614

DOI

29
Muller MJ, Klumpp S, Lipowsky R (2010) Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophys J 98:2610–2618

DOI

30
Overly CC, Hollenbeck PJ (1996) Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons. J Neurosci 16:6056–6064

31
Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109(Pt 5):971–980

32
Radad K, Rausch WD, Gille G (2006) Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 49:379–386

DOI

33
Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 1415:136–148

DOI

34
Reddy PH, Shirendeb UP (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochim Biophy Acta 1822:101–110

DOI

35
Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 1147:21–29

DOI

36
Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

DOI

37
Sabatelli M, Moncada A, Conte A, Lattante S, Marangi G (2013) Mutations in the 3’ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum Mol Genet 22:4748–4755

DOI

38
Salinas S, Bilsland LG, Schiavo G (2008) Molecular landmarks along the axonal route: axonal transport in health and disease. Curr Opin Cell Biol 20:445–453

DOI

39
Sanders LH, Greenamyre JT (2013) Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 62:111–120

DOI

40
Sheng ZH, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93

DOI

41
Singh RP, Thangaraj K, Kale RK (2014) Mitochondria in health and disease. Mitochondrion 16:1

DOI

42
Srivastava P, Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274:4788–4801

DOI

43
Tourtellotte WG (2015) Axon transport and target tissue innervation hemostasis: relevant perspectives on the etiopathogenesis of familial dysautonomia. Am J Pathol S0002–9440(15):00644–00646

44
Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123(4):1405–1412

DOI

45
Wang X, Schwarz TL (2009a) Chapter 18 imaging axonal transport of Mitochondria. Methods Enzymol 457:319–333

DOI

46
Wang X, Schwarz TL (2009b) The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174

DOI

47
Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

DOI

48
Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

DOI

49
Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK (2014) Mitochondria: prospective targets for neuroprotection in Parkinson’s disease. Curr Pharm Des 20:5558–5573

DOI

50
Yang L, Parton R, Ball G, Qiu Z, Greenaway AH, Davis I, Lu W (2010) An adaptive non-local means filter for denoising live-cell images and improving particle detection. J Struct Biol 172:233–243

DOI

51
Yang L, Qiu Z, Greenaway AH, Lu W (2012) A new framework for particle detection in low-SNR fluorescence live-cell images and its application for improved particle tracking. IEEE Trans Biomed Eng 7:2040–2050

DOI

52
Zhang K, Osakada Y, Vrljic M, Chen L, Mudrakola HV, Cui B (2010) Single-molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip 10:2566–2573

DOI

53
Zhang K, Osakada Y, Xie W, Cui B (2011) Automated image analysis for tracking cargo transport in axons. Microsc Res Tech 74:605–613

DOI

Outlines

/