RESEARCH ARTICLE

Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling

  • Zhi-Dong Liu 1 ,
  • Su Zhang 1,2 ,
  • Jian-Jin Hao 1 ,
  • Tao-Rong Xie 1 ,
  • Jian-Sheng Kang , 1,2
Expand
  • 1. Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200231, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 17 Jun 2016

Accepted date: 07 Jul 2016

Published date: 27 Sep 2016

Copyright

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn

Abstract

Neuronal atrophy is a common pathological feature occurred in aging and neurodegenerative diseases. A variety of abnormalities including motor protein malfunction and mitochondrial dysfunction contribute to the loss of neuronal architecture; however, less is known about the intracellular signaling pathways that can protect against or delay this pathogenic process. Here, we show that the DYNC1I1 deficiency, a neuron-specific dynein intermediate chain, causes neuronal atrophy in primary hippocampal neurons. With this cellular model, we are able to find that activation of RAS-RAF-MEK signaling protects against neuronal atrophy induced by DYNC1I1 deficiency, which relies on MEK-dependent autophagy in neuron. Moreover, we further reveal that BRAF also protects against neuronal atrophy induced by mitochondrial impairment. These findings demonstrate protective roles of the RAS-RAF-MEK axis against neuronal atrophy, and imply a new therapeutic target for clinical intervention.

Cite this article

Zhi-Dong Liu , Su Zhang , Jian-Jin Hao , Tao-Rong Xie , Jian-Sheng Kang . Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein & Cell, 2016 , 7(9) : 638 -650 . DOI: 10.1007/s13238-016-0301-6

1
Banks GT, Fisher EM (2008) Cytoplasmic dynein could be key to understanding neurodegeneration. Genome Biol 9:214

DOI

2
Becker RE, Greig NH, Giacobini E (2008) Why do so many drugs for Alzheimer’s disease fail in development?Time for new methods and new practices? J Alzheimers Dis 15:303–325

3
Boylan KLM, Hays TS (2002) The gene for the intermediate chain subunit of cytoplasmic dynein is essential in Drosophila. Genetics 162:1211–1220

4
Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and-independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol 11:297–305

DOI

5
Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

DOI

6
Chen X-J, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B(2007) Proprioceptive sensory neuropathyin mice witha mutation in the cytoplasmic dynein heavy chain 1 gene. J Neurosci 27:14515–14524

DOI

7
Chin PC, Liu L, Morrison BE, Siddiq A, Ratan RR, Bottiglieri T, D’Mello SR (2004) The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. J Neurochem 90:595–608

DOI

8
Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35:1397–1409

DOI

9
Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity byhippocampal neuronsin culture. JNeurosci 8:1454–1468

10
Eschbach J, Dupuis L (2011) Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 130:348–363

DOI

11
Fiordalisi JJ, Johnson RL II, Ülkü AS, Der CJ, Cox AD (2001) Mammalian expression vectors for Ras family proteins: generation and use of expression constructs to analyze Ras family function. In: Der CJ, Balch WE(eds) Methods in enzymology. Academic Press, San Diego, pp3–36

DOI

12
Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363:392–394

DOI

13
Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP, Hedley-Whyte ET, Locascio JJ, Lipsitz L, Hyman BT (2008) Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67:1205–1212

DOI

14
Galabova-Kovacs G, Kolbus A, Matzen D, Meissl K, Piazzolla D, Rubiolo C, Steinitz K, Baccarini M (2006) ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle Georget. Tex 5:1514–1518

DOI

15
Ha J, Lo KW-H, Myers KR, Carr TM, Humsi MK, Rasoul BA, Segal RA, Pfister KK (2008) A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. J Cell Biol 181:1027–1039

DOI

16
Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

DOI

17
Heumann R, Goemans C, Bartsch D, Lingenhöhl K,Waldmeier PC, Hengerer B, Allegrini PR, Schellander K, Wagner EF, Arendt T (2000) Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J Cell Biol 151:1537–1548

DOI

18
Holzbaur ELF, Vallee RB (1994) Dyneins: molecular structure and cellular function. Annu Rev Cell Biol 10:339–372

DOI

19
Kapitein LC, Schlager MA, Kuijpers M, Wulf PS, van Spronsen M, MacKintosh FC, Hoogenraad CC (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20:290–299

DOI

20
Karran E, Mercken M, Strooper BD (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10:698–712

DOI

21
Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122

DOI

22
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

DOI

23
Kumar V, Zhang M-X, Swank MW, Kunz J, Wu G-Y (2005) Regulation of dendritic morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signalingpathways. JNeurosci 25:11288–11299

DOI

24
Lalli G (2014) Regulation of neuronal polarity. Exp Cell Res 328:267–275

DOI

25
Lipka J, Kuijpers M, Jaworski J, Hoogenraad CC (2013) Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem SocTrans 41:1605–1612

DOI

26
Maday S, Wallace KE, Holzbaur ELF (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417

DOI

27
Mazzoni IE, Saïd FA, Aloyz R, Miller FD, Kaplan D (1999) Ras regulates sympathetic neuron survival by suppressing the p53mediated cell death pathway. J Neurosci 19:9716–9727

28
Mitchell DJ, Blasier KR, Jeffery ED, Ross MW, Pullikuth AK, Suo D,Park J, Smiley WR, Lo KW-H, Shabanowitz J (2012) Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylationand recruitscytoplasmicdyneintosignalingendosomes for retrograde axonaltransport. JNeurosci 32:15495–15510

DOI

29
Moreira PI, Zhu X, Wang X, Lee H, Nunomura A, Petersen RB, Perry G, Smith MA (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220

DOI

30
Myers KR, Lo KW-H, Lye RJ, Kogoy JM, Soura V, Hafezparast M, Pfister KK (2007) Intermediate chain subunit as a probe for cytoplasmic dynein function: biochemical analyses and live cell imaging in PC12 cells. J Neurosci Res 85:2640–2647

DOI

31
Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJG, Nyengaard JR, Regeur L(2003) Aging and the human neocortex. Exp Gerontol 38:95–99

DOI

32
Payne BAI, Chinnery PF (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta BBA-Bioenerg. 1847:1347–1353

DOI

33
Pfister KK, Fisher EMC, Gibbons IR, Hays TS, Holzbaur ELF, McIntosh JR, Porter ME, Schroer TA, Vaughan KT, Witman GB (2005) Cytoplasmic dynein nomenclature. J Cell Biol 171:411–413

DOI

34
Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z,Vacher C, O’Kane CJ, Brown SDM, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37:771–776

DOI

35
Regeur L, Badsberg Jensen G, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 15:347–352

DOI

36
Rosse C, Boeckeler K, Linch M, Radtke S, Frith D, Barnouin K, Morsi AS, Hafezparast M, Howell M, Parker PJ (2012) Binding of dynein intermediate chain 2 to paxillin controls focal adhesion dynamics and migration. J Cell Sci 125:3733–3738

DOI

37
Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. BiophysJ 76:469–477

DOI

38
Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 53:181–188

DOI

39
Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L (2015) The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell 162:72–83

DOI

40
Song A, Wang D, Chen G, Li Y, Luo J, Duan S, Poo M (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136:1148–1160

DOI

41
Soo KY, Farg M, Atkin JD (2011) Molecular motor proteins and amyotrophic lateral sclerosis. IntJ Mol Sci 12:9057–9082

DOI

42
Swaab DF, Hofman MA, Lucassen PJ, Salehi A, Uylings HBM (1994) Neuronal atrophy, not cell death, is the main hallmark of Alzheimer’s disease. Neurobiol Aging 15:369–371

DOI

43
Vaughan PS, Leszyk JD, Vaughan KT (2001) Cytoplasmic dynein intermediate chain phosphorylation regulates binding to dynactin. J Biol Chem 276:26171–26179

DOI

44
Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating beclin 1. J Biol Chem 284:21412–21424

DOI

45
Xie Y, Zhou B, Lin M-Y, Wang S, Foust KD, Sheng Z-H (2015) Endolysosomal deficits augment mitochondria pathology in spinal motor neurons of asymptomatic fALS mice. Neuron 87:355–370

DOI

46
Yamaguchi T, Kakefuda R, Tajima N, Sowa Y, Sakai T (2011) Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/ 2inhibitor,on colorectalcancercell linesin vitroandin vivo. IntJ Oncol 39:23–31

47
Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger SH, Zimmerman S, Jan LY, Jan YN (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10:1172–1180

DOI

48
Zhong J, Li X, McNamee C, Chen AP, Baccarini M, Snider WD (2007) Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat Neurosci 10:598–607

DOI

Outlines

/