RESEARCH ARTICLE

Vitamin C alleviates aging defects in a stem cell model for Werner syndrome

  • Ying Li 1,2 ,
  • Weizhou Zhang 5 ,
  • Liang Chang 4 ,
  • Yan Han 1,2 ,
  • Liang Sun 6 ,
  • Xiaojun Gong 9 ,
  • Hong Tang 9 ,
  • Zunpeng Liu 1,2 ,
  • Huichao Deng 1,2 ,
  • Yanxia Ye 3 ,
  • Yu Wang 3 ,
  • Jian Li 6 ,
  • Jie Qiao 4 ,
  • Jing Qu , 2,3 ,
  • Weiqi Zhang , 1,7 ,
  • Guang-Hui Liu , 1,2,7,8
Expand
  • 1. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 4. Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing 100191, China
  • 5. Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
  • 6. The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
  • 7. FSU-CAS Innovation Institute, Foshan University, Foshan 528000, China
  • 8. Beijing Institute for Brain Disorders, Beijing 100069, China
  • 9. Department of Pediatrics, Beijing Shijitan Hospital Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing 100038, China

Received date: 03 Mar 2016

Accepted date: 29 Apr 2016

Published date: 18 Jul 2016

Copyright

2016 The Author(s) 2016. This article is published with open access at Springerlink.com and journal.hep.com.cn

Abstract

Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRNdeficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.

Cite this article

Ying Li , Weizhou Zhang , Liang Chang , Yan Han , Liang Sun , Xiaojun Gong , Hong Tang , Zunpeng Liu , Huichao Deng , Yanxia Ye , Yu Wang , Jian Li , Jie Qiao , Jing Qu , Weiqi Zhang , Guang-Hui Liu . Vitamin C alleviates aging defects in a stem cell model for Werner syndrome[J]. Protein & Cell, 2016 , 7(7) : 478 -488 . DOI: 10.1007/s13238-016-0278-1

1
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

DOI

2
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

DOI

3
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K (2006) Resveratrol improves health and survival of mice on a highcalorie diet. Nature 444:337–342

DOI

4
Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16:593–610

DOI

5
Blondel S, Egesipe AL, Picardi P, Jaskowiak AL, Notarnicola M, Ragot J, Tournois J, Le Corf A, Brinon B, Poydenot P (2016) Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation. Cell Death Dis 7:e2105

6
Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11:567–578

7
Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

DOI

8
Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci Transl Med 3:89ra58

9
Chen J, Guo L, Zhang L, Wu H, Yang J, Liu H, Wang X, Hu X, Gu T, Zhou Z (2013) Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet 45:1504–1509

DOI

10
Cheung HH, Liu X, Canterel-Thouennon L, Li L, Edmonson C, Rennert OM (2014) Telomerase protects werner syndrome lineage-specific stem cells from premature aging. Stem Cell Reports 2:534–546

DOI

11
Dallaire A, Proulx S, Simard MJ, Lebel M (2014) Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span. BMC Genomics 15:940

DOI

12
Davis T, Kipling D (2006) Werner Syndrome as an example of inflamm-aging: possible therapeutic opportunities for a progeroid syndrome? Rejuvenation Res 9:402–407

13
Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

DOI

14
Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826:443–457

15
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Y (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 6:10068

DOI

16
Esteban MA, Pei D (2012) Vitamin C improves the quality of somatic cell reprogramming. Nat Genet 44:366–367

DOI

17
Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79

DOI

18
Frost B, Hemberg M, Lewis J, Feany MB (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366

DOI

19
Fu L, Xu X, Ren R, Wu J, Zhang W, Yang J, Ren X, Wang S, Zhao Y, Sun L (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell 7(3):210–221

20
Fukushima R, Yamazaki E (2010) Vitamin C requirement in surgical patients. Curr Opin Clin Nutr Metab Care 13:669–676

DOI

21
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

22
Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:aaa5612

23
Kudlow BA, Kennedy BK, Monnat RJ Jr (2007) Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8:394–404

DOI

24
La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6:5453–5472

DOI

25
Labbe A, Turaga RV, Paquet ER, Garand C, Lebel M (2010) Expression profiling of mouse embryonic fibroblasts with a deletion in the helicase domain of the Werner Syndrome gene homologue treated with hydrogen peroxide. BMC Genomics 11:127

DOI

26
Lebel M, Massip L, Garand C, Thorin E (2010) Ascorbate improves metabolic abnormalities in Wrn mutant mice but not the free radical scavenger catechin. Ann N Y Acad Sci 1197:40–44

DOI

27
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C (2011) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225

DOI

28
Liu GH, Ding Z, Izpisua Belmonte JC (2012a) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol 24:765–774

29
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W (2012b) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607

30
Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, Gu Y, Yi F, Xu X, Zhang W (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 5:4330

31
Lo Cicero A, Nissan X (2015) Pluripotent stem cells to model Hutchinson–Gilford progeria syndrome (HGPS): current trends and future perspectives for drug discovery. Ageing Res Rev 24:343–348

DOI

32
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

DOI

33
Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

34
Martins R, Lithgow GJ, Link W (2015) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15 (2):196–207

35
Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S (2013) Human iPSCbased modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705

DOI

36
Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ (2008) (-)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch Biochem Biophys 476:171–177

DOI

37
Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Li Y (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205

DOI

38
Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

DOI

39
Pera MF (2013) Epigenetics, vitamin supplements and cellular reprogramming. Nat Genet 45:1412–1413

DOI

40
Polosak J, Kurylowicz A, Roszkowska-Gancarz M, Owczarz M, Puzianowska-Kuznicka M (2011) Aging is accompanied by a progressive decrease of expression of the WRN gene in human blood mononuclear cells. J Gerontol A Biol Sci Med Sci 66:19–25

41
Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595

DOI

42
Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban MA, Pan G (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-Cdependent manner. Cell Stem Cell 9:575–587

DOI

43
Wu H, Wei L, Fan F, Ji S, Zhang S, Geng J, Hong L, Fan X, Chen Q, Tian J (2015) Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat Commun 6:6239

DOI

44
Yang J, Cai N, Yi F, Liu GH, Qu J, Izpisua Belmonte JC (2014) Gating pluripotency via nuclear pores. Trends Mol Med 20:1–7

DOI

45
Young JI, Zuchner S, Wang G (2015) Regulation of the Epigenome by Vitamin C. Annu Rev Nutr 35:545–564

DOI

46
Yu DX, Marchetto MC, Gage FH (2013) Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 12:678–688

DOI

47
Yulin X, Lizhen L, Lifei Z, Shan F, Ru L, Kaimin H, Huang H (2012) Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells. Folia Biol (Praha) 58:221–230

48
Zhang W, Qu J, Suzuki K, Liu GH, Izpisua Belmonte JC (2013) Concealing cellular defects in pluripotent stem cells. Trends Cell Biol 23:587–592

DOI

49
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163

DOI

Outlines

/