MINI-REVIEW

Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells

  • Qun Zhang ,
  • Wenhua Zhang
Expand
  • College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China

Received date: 31 Aug 2015

Accepted date: 31 Oct 2015

Published date: 13 Mar 2016

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization.

Cite this article

Qun Zhang , Wenhua Zhang . Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells[J]. Protein & Cell, 2016 , 7(2) : 81 -88 . DOI: 10.1007/s13238-015-0233-6

1
Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

DOI

2
Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

DOI

3
Ambrose JC, Wasteneys GO (2008) CLASP modulates microtubulecortex interaction during self-organization of acentrosomal microtubules. Mol Biol Cell 19:4730–4737

DOI

4
Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V,Marc J, Overall R, Wasteneys GO (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 24:649–659

DOI

5
Barton DA, Vantard M, Overall RL (2008) Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. Plant Cell 20:982–994

DOI

6
Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J (2013) SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J 32:260–274

DOI

7
Beck M, Komis G, Ziemann A, Menzel D, Samaj J (2011) Mitogenactivated protein kinase 4 is involved in the regulation of mitoticand cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol 189:1069–1083

DOI

8
Boutte Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B(2006) The plasma membrane recycling pathway and cell polarityin plants: studies on PIN proteins. J Cell Sci 119:1255–1265

DOI

9
Brandizzi F, Wasteneys GO (2013) Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. Plant J 75:339–349

DOI

10
Cao L, Wang L, Zheng M, Cao H, Ding L, Zhang X, Fu Y (2013) Arabidopsis AUGMIN subunit8 is a microtubule plus-end binding protein that promotes microtubule reorientation in hypocotyls. Plant Cell 25:2187–2201

DOI

11
Chen X, Grandont L, Li H, Hauschild R, Paque S, Abuzeineh A, Rakusova H, Benkova E, Perrot-Rechenmann C, Friml J (2014) Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Nature 516:90–93

DOI

12
Deeks MJ, Fendrych M, Smertenko A, Bell KS, Oparka K, Cvrckova F, Zarsky V,Hussey PJ (2010) The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J Cell Sci 123:1209–1215

DOI

13
Dhonukshe P, Laxalt AM, Goedhart J, Gadella TW, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

DOI

14
Dixit R, Cyr R (2004) The cortical microtubule array: from dynamics to organization. Plant Cell 16:2546–2552

DOI

15
Effendi Y, Jones AM, Scherer GF (2013) AUXIN-BINDING-PROTEIN1(ABP1) in phytochrome-B-controlled responses. J Exp Bot 64:5065–5074

DOI

16
Ehrhardt DW, Shaw SL (2006) Microtubule dynamics and organizationin the plant cortical array. Annu Rev Plant Biol 57:859–875

DOI

17
Eisinger W, Ehrhardt D, Briggs W (2012a) Microtubules are essential for guard-cell function in Vicia and Arabidopsis. Mol Plant 5:601–610

DOI

18
Eisinger WR, Kirik V, Lewis C, Ehrhardt DW, Briggs WR (2012b) Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis. Mol Plant 5:716–725

DOI

19
Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC (2015) Genome sequencing of Arabidopsis abp1-5 reveals second-site mutations that may affect phenotypes. Plant Cell 27:1820–1826

DOI

20
Galatis B, Apostolakos P (2004) The role of the cytoskeleton in the morphogenesis and function of stomatal complexes. New Phytol 161:613–639

DOI

21
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 112:2275–2280

DOI

22
Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J(2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

DOI

23
Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K(2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

DOI

24
Gu Y, Deng Z, Paredez AR, DeBolt S, Wang ZY, Somerville C (2008) Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci USA 105:18064–18069

DOI

25
Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

DOI

26
Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

DOI

27
Hashimoto T (2015) Microtubules in plants. Arabidopsis Book 13:e0179

DOI

28
Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxint ransport. PLoS Biol 8:e1000516

DOI

29
Ho AY, Day DA, Brown MH, Marc J (2009) Arabidopsis phospho lipaseD δ as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. Funct Plant Biol 36:190–198

DOI

30
Huang S, Blanchoin L, Kovar DR, Staiger CJ (2003) Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem 278:44832–44842

DOI

31
Huang S, Gao L, Blanchoin L, Staiger CJ (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17:1946–1958

DOI

32
Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q (2014) Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239:565–575

DOI

33
Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M (2010) An Arabidopsis hydrophilic Ca2+ -binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol 51:366–379

DOI

34
Keerthisinghe S, Nadeau JA, Lucas JR, Nakagawa T, Sack FD (2015) The Arabidopsis leucine-rich repeat receptor-like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis. Plant J 81:684–694

DOI

35
Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

DOI

36
Khanna R, Li J, Tseng TS, Schroeder JI, Ehrhardt DW, Briggs WR (2014) COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure. Mol Plant 7:1441–1454

DOI

37
Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J (2008) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1:1056–1066

DOI

38
Li J (2010) Regulation of the nuclear activities of brassinosteroid signaling. Curr Opin Plant Biol 13:540–547

DOI

39
Li J, Wang X, Qin T, Zhang Y, Liu X, Sun J, Zhou Y, Zhu L, Zhang Z, Yuan M, Mao T (2011) MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Arabidopsis. Plant Cell 23:4411–4427

DOI

40
Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–3754

DOI

41
Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y (2013) Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol 23:290–297

DOI

42
Lin F, Qu Y, Zhang Q (2014) Phospholipids: molecules regulating cytoskeletal organization in plant abiotic stress tolerance. Plant Signal Behav 9:e28337

DOI

43
Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R,Ketelaar T, Emons AM, Mulder BM, Kirik V, Ehrhardt DW (2013) A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342:1245533

DOI

44
Liu CM (2015) AUXIN BINDING PROTEIN 1 (ABP1): a matter of fact. J Integr Plant Biol 57:234–235

DOI

45
Liu X, Qin T, Ma Q, Sun J, Liu Z, Yuan M, Mao T (2013) Lightregulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis. Plant Cell 25:1740–1755

DOI

46
Lloyd C, Chan J (2004) Microtubules and the shape of plants to come. Nat Rev Mol Cell Biol 5:13–22

DOI

47
Locascio A, Blazquez MA, Alabadi D (2013) Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr Biol 23:804–809

DOI

48
Lucas J, Shaw SL (2008) Cortical microtubule arrays in the Arabidopsis seedling. Curr Opin Plant Biol 11:94–98

DOI

49
Lucas JR, Nadeau JA, Sack FD (2006) Microtubule arrays and Arabidopsis stomatal development. J Exp Bot 57:71–79

DOI

50
Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From The Cover:A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A 102:12270–12275

DOI

51
Marcus AI, Moore RC, Cyr RJ (2001) The role of microtubules in guard cell function. Plant Physiol 125:387–395

DOI

52
Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157:1175–1186

DOI

53
Muller M, Munne-Bosch S (2015) Ethylene response fekerehub in hormone and stress signaling. Plant Physiol 169:32–41

DOI

54
Nagasaki N, Tomioka R, Maeshima M (2008) A hydrophilic cationbinding protein of Arabidopsis thaliana, AtPCaP1, is localized to plasma membrane via N-myristoylation and interacts with calmodulin and the phosphatidylinositol phosphates PtdIns (3,4,5) P3 and PtdIns (3,5) P2. FEBS J 275:2267–2282

DOI

55
Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190

DOI

56
Oda Y, Fukuda H (2012) Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337:1333–1336

DOI

57
Oda Y, Fukuda H (2013) The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning. Front Plant Sci 4:1–6

DOI

58
Paque S, Mouille G, Grandont L, Alabadi D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blazquez MA, Perrot-Rechenmann C (2014) AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in Arabidopsis. Plant Cell 26:280–295

DOI

59
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

DOI

60
Pleskot R, Potocky M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentova O, Novotna Z,Zarsky V (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

DOI

61
Pleskot R, Li J, Zarsky V, Potocky M, Staiger CJ (2013) Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18:496–504

DOI

62
Pleskot R, Pejchar P, Staiger CJ, Potocky M (2014) When fat is not bad: the regulation of actin dynamics by phospholipid signaling molecules. Front Plant Sci 5:1–6

DOI

63
Polko JK, van Zanten M, van Rooij JA, Maree AF, Voesenek LA, Peeters AJ, Pierik R (2012) Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193:339–348

DOI

64
Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Covanova M, Hayashi K,Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C,Aniento F, Zazimalova E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121

DOI

65
Rodriguez-Milla MA, Salinas J (2009) Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress. Mol Plant 2:526–534

DOI

66
Ruan Y, Wasteneys GO (2014) CLASP: a microtubule-based integrator of the hormone-mediated transitions from cell division to elongation. Curr Opin Plant Biol 22:149–158

DOI

67
Sambade A, Pratap A, Buschmann H, Morris RJ, Lloyd C (2012) The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl. Plant Cell 24:192–201

DOI

68
Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

DOI

69
Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR (2004) The Arabidopsis sku6/spiral1 gene encodes a plus endlocalized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16:1506–1520

DOI

70
Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

DOI

71
Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237

DOI

72
Stace CL, Ktistakis NT (2006) Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim Biophys Acta 1761:913–926

DOI

73
Sun J, Ma Q, Mao T (2015) Ethylene regulates Arabidopsis microtubule-associated protein WDL5 in etiolated hypocotyl elongation. Plant Physiol 169:325–337

DOI

74
Takahashi H, Kawahara A, Inoue Y (2003) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:932–940

DOI

75
Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547

DOI

76
Wang S, Kurepa J, Hashimoto T, Smalle JA (2011) Salt stressinduced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. Plant Cell 23:3412–3427

DOI

77
Wang X, Zhang J, Yuan M, Ehrhardt DW, Wang Z, Mao T (2012) Arabidopsis microtubule destabilizing protein 40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell 24:4012–4025

DOI

78
Wang X, Guo L, Wang G, Li M (2014) PLD: phospholipase Ds in plant signaling. Springer, Berlin, pp 3–26

DOI

79
Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H (2014) Cell surface ABP1-TMK auxinsensing complex activates ROP GTPase signaling. Science 343:1025–1028

DOI

80
Ye J, Zhang W, Guo Y (2013) Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant Cell Rep 32:139–148

DOI

81
Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J,Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

DOI

82
Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X(2009) Phospholipase Dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

DOI

83
Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24:4555–4576

DOI

84
Zhang C, Raikhel NV, Hicks GR (2013) CLASPing microtubules and auxin transport. Dev Cell 24:569–571

DOI

Outlines

/