REVIEW

Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus

  • Mingyang Wang ,
  • Michael Veit
Expand
  • Institute of Virology, Veterinary Medicine, Free University Berlin, Berlin, Germany

Received date: 26 May 2015

Accepted date: 06 Jul 2015

Published date: 26 Jan 2016

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Influenza C virus, a member of the Orthomyxoviridae family, causes flu-like disease but typically only with mild symptoms. Humans are the main reservoir of the virus, but it also infects pigs and dogs. Very recently, influenza C-like viruses were isolated from pigs and cattle that differ from classical influenza C virus and might constitute a new influenza virus genus. Influenza C virus is unique since it contains only one spike protein, the hemagglutinin-esterase-fusion glycoprotein HEF that possesses receptor binding, receptor destroying and membrane fusion activities, thus combining the functions of Hemagglutinin (HA) and Neuraminidase (NA) of influenza A and B viruses. Here we briefly review the epidemiology and pathology of the virus and the morphology of virus particles and their genome. The main focus is on the structure of the HEF protein as well as on its co- and posttranslational modification, such as N-glycosylation,disulfide bond formation, S-acylation and proteolytic cleavage into HEF1 and HEF2 subunits. Finally, we describe the functions of HEF: receptor binding, esterase activity and membrane fusion.

Cite this article

Mingyang Wang , Michael Veit . Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus[J]. Protein & Cell, 2016 , 7(1) : 28 -45 . DOI: 10.1007/s13238-015-0193-x

1
Alamgir AS, Matsuzaki Y, Hongo S, Tsuchiya E, Sugawara K, Muraki Y, Nakamura K (2000) Phylogenetic analysis of influenza C virus nonstructural (NS) protein genes and identification of the NS2 protein. J Gen Virol 81:1933–1940

DOI

2
Apostolov K, Flewett TH (1969) Further observations on the structure of influenza viruses A and C. J Gen Virol 4:365–370

DOI

3
Bottcher-Friebertshauser E, Klenk HD, Garten W (2013) Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis 69:87–100

DOI

4
Brett K, Kordyukova LV, Serebryakova MV, Mintaev RR, Alexeevski AV, Veit M (2014) Site-specific S-acylation of influenza virus hemagglutinin: the location of the acylation site relative to the membrane border is the decisive factor for attachment of stearate. J Biol Chem 289:34978–34989

DOI

5
Brown IH, Harris PA, Alexander DJ (1995) Serological studies of influenza viruses in pigs in Great Britain 1991-2. Epidemiol Infect 114:511–520

DOI

6
Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43

DOI

7
Calvo C, Garcia-Garcia ML, Borrell B, Pozo F, Casas I (2013) Prospective study of influenza C in hospitalized children. Pediatr Infect Dis J 32:916–919

8
Chen BJ, Takeda M, Lamb RA (2005) Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J Virol 79:13673–13684

DOI

9
Cheong HK, Cheong C, Lee YS, Seong BL, Choi BS (1999) Structure of influenza virus panhandle RNA studied by NMR spectroscopy and molecular modeling. Nucleic Acids Res 27:1392–1397

DOI

10
Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F (2014) Cocirculation of two distinct genetic and antigenic lineages of proposed influenza D virus in cattle. J Virol 89:1036–1042

11
Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F (2015)Cocirculation of two distinct genetic and antigenic lineages of proposed influenza d virus in cattle. J Virol 89:1036–1042

DOI

12
Compans RW, Bishop DH, Meier-Ewert H (1977) Structural components of influenza C virions. J Virol 21:658–665

13
Crescenzo-Chaigne B, van der Werf S (2007) Rescue of influenza Cvirus from recombinant DNA. J Virol 81:11282–11289

DOI

14
Crescenzo-Chaigne B, Barbezange C, van der Werf S (2008) Non coding extremities of the seven influenza virus type C vRNA segments: effect on transcription and replication by the type C and type A polymerase complexes. Virol J 5:132

DOI

15
Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA(2009) Composition and functions of the influenza fusion peptide. Protein Pept Lett 16:766–778

DOI

16
Desselberger U, Racaniello VR, Zazra JJ, Palese P (1980) The 3’and 5’-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8:315–328

DOI

17
Doms RW, Lamb RA, Rose JK, Helenius A (1993) Folding and assembly of viral membrane proteins. Virology 193:545–562

DOI

18
Engel S, Scolari S, Thaa B, Krebs N, Korte T, Herrmann A, Veit M(2010) FLIM-FRETand FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem J 425:567–573

DOI

19
Engel S, de Vries M, Herrmann A, Veit M (2012) Mutation of a rafttargeting signal in the transmembrane region retards transport of influenza virus hemagglutinin through the Golgi. FEBS Lett 586:277–282

DOI

20
Flewett TH, Apostolov K (1967) A reticular structure in the wall of influenza C virus. J Gen Virol 1:297–304

21
Fodor E, Pritlove DC, Brownlee GG (1994) The influenza virus panhandle is involved in the initiation of transcription. J Virol 68:4092–4096

22
Formanowski F, Wharton SA, Calder LJ, Hofbauer C, Meier-Ewert H (1990) Fusion characteristics of influenza C viruses. J Gen Virol 71(Pt 5):1181–1188

DOI

23
Francis T Jr, Quilligan JJ Jr, Minuse E (1950) Identification of another epidemic respiratory disease. Science 112:495–497

DOI

24
Gao Q, Brydon EW, Palese P(2008) A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF. J Virol 82:6419–6426

DOI

25
Garten W, Will C, Buckard K, Kuroda K, Ortmann D, Munk K,Scholtissek C, Schnittler H, Drenckhahn D, Klenk HD (1992) Structure and assembly of hemagglutinin mutants of fowl plague virus with impaired surface transport. J Virol 66:1495–1505

26
Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz JM,Binnington B, Lindemann D, Lingwood CA, Shevchenko A,Schroeder C et al (2012) Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J Cell Biol 196:213–221

DOI

27
Gouarin S, Vabret A, Dina J, Petitjean J, Brouard J, Cuvillon-Nimal D, Freymuth F (2008) Study of influenza C virus infection in France. J Med Virol 80:1441–1446

DOI

28
Greaves J, Chamberlain LH (2011) DHHC palmitoyl transferases:substrate interactions and (patho)physiology. Trends Biochem Sci 36:245–253

DOI

29
Guo YJ, Jin FG, Wang P, Wang M, Zhu JM (1983) Isolation of influenza C virus from pigs and experimental infection of pigs with influenza C virus. J Gen Virol 64(Pt 1):177–182

30
Hamilton BS, Whittaker GR, Daniel S (2012) Influenza virusmediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4:1144–1168

DOI

31
Han X, Bushweller JH, Cafiso DS, Tamm LK (2001) Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 8:715–720

DOI

32
Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15:690–698

DOI

33
Hause BM, Ducatez M, Collin EA, Ran Z, Liu R, Sheng Z, Armien A,Kaplan B, Chakravarty S, Hoppe ADet al (2013) Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLoS Pathog 9:e1003176

34
Herrler G, Klenk HD (1987) The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology 159:102–108

DOI

35
Herrler G, Klenk HD (1991) Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40:213–234

DOI

36
Herrler G, Compans RW, Meier-Ewert H (1979) A precursor glycoprotein in influenza C virus. Virology 99:49–56

DOI

37
Herrler G, Nagele A, Meier-Ewert H, Bhown AS, Compans RW (1981) Isolation and structural analysis of influenza C virion glycoproteins. Virology 113:439–451

DOI

38
Herrler G, Rott R, Klenk HD, Muller HP, Shukla AK, Schauer R (1985) The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J 4:1503–1506

39
Herrler G, Reuter G, Rott R, Klenk HD, Schauer R (1987) N-acetyl-9-O-acetylneuraminic acid, the receptor determinant for influenza Cvirus, is a differentiation marker on chicken erythrocytes. Bio Chem Hoppe-Seyler 368:451–454

DOI

40
Herrler G, Durkop I, Becht H, Klenk HD (1988a) The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. J Gen Virol 69(Pt 4):839–846

41
Herrler G, Multhaup G, Beyreuther K, Klenk HD (1988b) Serine 71 of the glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus. Arch Virol 102:269–274

42
Hewat EA, Cusack S, Ruigrok RW, Verwey C (1984) Low resolution structure of the influenza C glycoprotein determined by electron microscopy. J Mol Biol 175:175–193

DOI

43
Hongo S, Sugawara K, Homma M, Nakamura K (1986a) The functions of oligosaccharide chains associated with influenza C viral glycoproteins. I. The formation of influenza C virus particles in the absence of glycosylation. Arch Virol 89:171–187

44
Hongo S, Sugawara K, Homma M, Nakamura K (1986b) The functions of oligosaccharide chains associated with influenza C viral glycoproteins. II. The role of carbohydrates in the antigenic properties of influenza C viral glycoproteins. Arch Virol 89:189–201

45
Hongo S, Sugawara K, Muraki Y, Matsuzaki Y, Takashita E, Kitame F, Nakamura K (1999) Influenza C virus CM2 protein is produced from a 374-amino-acid protein (P42) by signal peptidase cleavage. J Virol 73:46–50

46
Horimoto T, Kawaoka Y (1994) Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 68:3120–3128

47
Horimoto T, Gen F, Murakami S, Iwatsuki-Horimoto K, Kato K,Akashi H, Hisasue M, Sakaguchi M, Kawaoka Y, Maeda K (2014) Serological evidence of infection of dogs with human influenza viruses in Japan. Vet Rec 174:96

DOI

48
Hsu MT, Parvin JD, Gupta S, Krystal M, Palese P (1987) Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci USA 84:8140–8144

DOI

49
Huang RT, Rott R, Klenk HD (1981) Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247

DOI

50
Joosting AC, Head B, Bynoe ML, Tyrrell DA (1968) Production of common colds in human volunteers by influenza C virus. Br Med J 4:153–154

DOI

51
Kauppila J, Ronkko E, Juvonen R, Saukkoriipi A, Saikku P, Bloigu A,Vainio O, Ziegler T (2014) Influenza C virus infection in military recruits–symptoms and clinical manifestation. J Med Virol 86:879–885

DOI

52
Kemble GW, Danieli T, White JM (1994) Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–391

DOI

53
Kitame F, Sugawara K, Ohwada K, Homma M (1982) Proteolytic activation of hemolysis and fusion by influenza C virus. Arch Virol 73:357–361

DOI

54
Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A viruses by trypsin treatment. Virology 68:426–439

DOI

55
Kordyukova LV, Serebryakova MV, Baratova LA, Veit M (2008) Sacylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine. J Virol 82:9288–9292

DOI

56
Kraut J (1977) Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem 46:331–358

DOI

57
Lazarowitz SG, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454

DOI

58
Lenard J, Miller DK (1981) pH-Dependent hemolysis by influenza, Semliki, Forest virus, and Sendai virus. Virology 110:479–482

DOI

59
Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49:6305–6316

DOI

60
Lorieau JL, Louis JM, Schwieters CD, Bax A (2012) pH-triggered,activated-state conformations of the influenza hemagglutinin fusion peptide revealed by NMR. Proc Natl Acad Sci USA 109:19994–19999

DOI

61
Maeda T, Ohnishi S (1980) Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEBS Lett 122:283–287

DOI

62
Mair CM, Meyer T, Schneider K, Huang Q, Veit M, Herrmann A (2014) A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion. J Virol 88:13189–13200

DOI

63
Manuguerra JC, Hannoun C (1992) Natural infection of dogs by influenza C virus. Res Virol 143:199–204

DOI

64
Manuguerra JC, Hannoun C, Aymard M (1992) Influenza C virus infection in France. J Infect 24:91–99

DOI

65
Manuguerra JC, Hannoun C, Simon F, Villar E, Cabezas JA (1993)Natural infection of dogs by influenza C virus: a serological survey in Spain. New Microbiol 16:367–371

66
Martin LT, Verhagen A, Varki A (2003) Recombinant influenza Chemagglutinin-esterase as a probe for sialic acid 9-O-acetylation. Methods Enzymol 363:489–498

DOI

67
Matsuzaki M, Sugawara K, Adachi K, Hongo S, Nishimura H, Kitame F,Nakamura K (1992) Location of neutralizing epitopes on the hemagglutinin-esterase protein of influenza C virus. Virology 189:79–87

DOI

68
Matsuzaki Y, Mizuta K, Sugawara K, Tsuchiya E, Muraki Y, Hongo S,Suzuki H, Nishimura H (2003) Frequent reassortment among influenza C viruses. J Virol 77:871–881

DOI

69
Matsuzaki Y, Katsushima N, Nagai Y, Shoji M, Itagaki T, Sakamoto M, Kitaoka S, Mizuta K, Nishimura H (2006) Clinical features of influenza C virus infection in children. J Infect Dis 193:1229–1235

DOI

70
Matsuzaki Y, Abiko C, Mizuta K, Sugawara K, Takashita E, Muraki Y, Suzuki H, Mikawa M, Shimada S, Sato K et al (2007) Anationwide epidemic of influenza C virus infection in Japan in 2004. J Clin Microbiol 45:783–788

DOI

71
Mayr J, Haselhorst T, Langereis MA, Dyason JC, Huber W, Frey B,Vlasak R, de Groot RJ, von Itzstein M(2008) Influenza C virus and bovine coronavirus esterase reveal a similar catalytic mechanism:new insights for drug discovery. Glycoconj J 25:393–399

DOI

72
Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA(1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 274:3910–3917

DOI

73
Minuse E, Quilligan JJ Jr, Francis T Jr (1954) Type C influenza virus.I. Studies of the virus and its distribution. J Lab Clin Med 43:31–42

74
Muchmore EA, Varki A (1987) Selective inactivation of influenza Cesterase: a probe for detecting 9-O-acetylated sialic acids. Science 236:1293–1295

DOI

75
Muraki Y, Hongo S (2010) The molecular virology and reverse genetics of influenza C virus. Jpn J Infect Dis 63:157–165

76
Muraki Y, Hongo S, Sugawara K, Kitame F, Nakamura K (1996) Evolution of the haemagglutinin-esterase gene of influenza C virus. J Gen Virol 77(Pt 4):673–679

77
Muraki Y, Washioka H, Sugawara K, Matsuzaki Y, Takashita E,Hongo S (2004) Identification of an amino acid residue on influenza C virus M1 protein responsible for formation of the cordlike structures of the virus. J Gen Virol 85:1885–1893

DOI

78
Muraki Y, Murata T, Takashita E, Matsuzaki Y, Sugawara K, Hongo S(2007) A mutation on influenza C virus M1 protein affects virion morphology by altering the membrane affinity of the protein. J Virol 81:8766–8773

DOI

79
Naeve CW, Williams D (1990) Fatty acids on the A/Japan/305/57 influenza virus hemagglutinin have a role in membrane fusion. EMBO J 9:3857–3866

80
Nagele A, Meier-Ewert H (1984) Influenza-C-virion-associated RNA-dependent RNA-polymerase activity. Biosci Rep 4:703–706

DOI

81
Naim HY, Amarneh B, Ktistakis NT, Roth MG (1992) Effects of altering palmitylation sites on biosynthesis and function of the influenza virus hemagglutinin. J Virol 66:7585–7588

82
Nakada S, Creager RS, Krystal M, Aaronson RP, Palese P (1984a)Influenza C virus hemagglutinin: comparison with influenza A and B virus hemagglutinins. J Virol 50:118–124

83
Nakada S, Creager RS, Krystal M, Palese P (1984b) Complete nucleotide sequence of the influenza C/California/78 virus nucleoprotein gene. Virus Res 1:433–441

84
Nakada S, Graves PN, Desselberger U, Creager RS, Krystal M,Palese P (1985) Influenza C virus RNA 7 codes for a nonstructural protein. J Virol 56:221–226

85
Nakada S, Graves PN, Palese P (1986) The influenza C virus NS gene: evidence for a spliced mRNA and a second NS gene product (NS2 protein). Virus Res 4:263–273

DOI

86
Nerome K, Nakayama M, Ishida M (1979) Established cell line sensitive to influenza C virus. J Gen Virol 43:257–259

DOI

87
Neumann G, Kawaoka Y(2006)Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 12:881–886

DOI

88
Nishimura H, Hara M, Sugawara K, Kitame F, Takiguchi K, Umetsu Y, Tonosaki A, Nakamura K (1990) Characterization of the cordlike structures emerging from the surface of influenza C virusinfected cells. Virology 179:179–188

DOI

89
Nishimura H, Hongo S, Sugawara K, Muraki Y, Kitame F, Washioka H, Tonosaki A, Nakamura K (1994) The ability of influenza C virus to generate cord-like structures is influenced by the gene coding for M protein. Virology 200:140–147

DOI

90
O’Callaghan RJ, Loughlin M, Labat DD, Howe C (1977) Properties of influenza C virus grown in cell culture. J Virol 24:875–882

91
Oeffner F, Klenk HD, Herrler G (1999) The cytoplasmic tail of the influenza C virus glycoprotein HEF negatively affects transport to the cell surface. J Gen Virol 80(Pt 2):363–369

92
Ohuchi M, Ohuchi R, Mifune K (1982) Demonstration of hemolytic and fusion activities of influenza C virus. J Virol 42:1076–1079

93
Ohwada K, Kitame F, Sugawara K, Nishimura H, Homma M,Nakamura K (1987) Distribution of the antibody to influenza C virus in dogs and pigs in Yamagata Prefecture, Japan. Microbiol Immunol 31:1173–1180

DOI

94
Pachler K, Mayr J, Vlasak R (2010) A seven plasmid-based system for the rescue of influenza C virus. J Mol Genet Med 4:239–246

95
Pekosz A, Lamb RA (1998) Influenza C virus CM2 integral membrane glycoprotein is produced from a polypeptide precursor by cleavage of an internal signal sequence. Proc Natl Acad Sci USA 95:13233–13238

DOI

96
Pekosz A, Lamb RA (1999) Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA. J Virol 73:8808–8812

97
Peng G, Hongo S, Muraki Y, Sugawara K, Nishimura H, Kitame F,Nakamura K (1994) Genetic reassortment of influenza C viruses in man. J Gen Virol 75(Pt 12):3619–3622

98
Pfeifer JB, Compans RW (1984) Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus Res 1:281–296

DOI

99
Pleschka S, Klenk HD, Herrler G (1995) The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis. J Gen Virol 76(Pt 10):2529–2537

100
Robertson JS (1979) 5’ and 3’ terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Res 6:3745–3757

DOI

101
Rogers GN, Herrler G, Paulson JC, Klenk HD (1986) Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J Biol Chem 261:5947–5951

102
Rosenthal PB, Zhang X, Formanowski F, Fitz W, Wong CH, Meier-Ewert H, Skehel JJ, Wiley DC (1998) Structure of the haemagglutinin-esterase-fusion glycoprotein of influenza C virus. Nature 396:92–96

DOI

103
Rossman JS, Lamb RA (2011) Influenza virus assembly and budding. Virology 411:229–236

DOI

104
Rossman JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902–913

DOI

105
Sakai T, Ohuchi R, Ohuchi M (2002) Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol 76:4603–4611

DOI

106
Salez N, Melade J, Pascalis H, Aherfi S, Dellagi K, Charrel RN,Carrat F, de Lamballerie X(2014) Influenza C virus high seroprevalence rates observed in 3 different population groups. J Infect 69:182–189

DOI

107
Schwegmann-Wessels C, Herrler G (2006) Sialic acids as receptor determinants for coronaviruses. Glycoconj J 23:51–58

DOI

108
Segal MS, Bye JM, Sambrook JF, Gething MJ (1992) Disulfide bond formation during the folding of influenza virus hemagglutinin. J Cell Biol 118:227–244

DOI

109
Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

DOI

110
Speranskaia AS, Mel’nikova NV, Belenkin MS, Dmitriev AA, Oparina N, Kudriavtseva AV (2012) Genetic diversity and evolution of the influenza C virus. Genetika 48:797–805

111
Steinhauer DA, Wharton SA, Wiley DC, Skehel JJ (1991) Deacylation of the hemagglutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties. Virology 184:445–448

DOI

112
Stewart SM, Pekosz A (2012) The influenza C virus CM2 protein can alter intracellular pH, and its transmembrane domain can substitute for that of the influenza A virus M2 protein and support infectious virus production. J Virol 86:1277–1281

DOI

113
Stieneke-Grober A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11:2407–2414

114
Sugawara K, Ohuchi M, Nakamura K, Homma M (1981) Effects of various proteases on the glycoprotein composition and the infectivity of influenza C virus. Arch Virol 68:147–151

DOI

115
Szepanski S, Gross HJ, Brossmer R, Klenk HD, Herrler G (1992) A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity. Virology 188:85–92

DOI

116
Szepanski S, Veit M, Pleschka S, Klenk HD, Schmidt MF, Herrler G(1994) Post-translational folding of the influenza C virus glycoprotein HEF: defective processing in cells expressing the cloned gene. J Gen Virol 75(Pt 5):1023–1030

DOI

117
Takashita E, Muraki Y, Sugawara K, Asao H, Nishimura H, Suzuki K,Tsuji T, Hongo S, Ohara Y, Kawaoka Y et al (2012) Intrinsic temperature sensitivity of influenza C virus hemagglutininesterase-fusion protein. J Virol 86:13108–13111

DOI

118
Taylor RM (1949) Studies on survival of influenza virus between epidemics and antigenic variants of the virus. Am J Public Health N Health 39:171–178

DOI

119
Taylor RM (1951) A further note on 1233 influenza C virus. Archiv fur die gesamte Virusforschung 4:485–500

DOI

120
Thomas JK, Noppenberger J (2007) Avian influenza: a review. Am JHealth Syst Pharm (AJHP) 64:149–165

DOI

121
Trebbien R, Larsen LE, Viuff BM (2011) Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol J 8:434

DOI

122
Ujike M, Nakajima K, Nobusawa E (2004) Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation. J Virol 78:11536–11543

DOI

123
Veit M (2012) Palmitoylation of virus proteins. Biol Cell 104:493–515

DOI

124
Veit M, Schmidt MF (1993) Timing of palmitoylation of influenza virus hemagglutinin. FEBS Lett 336:243–247

DOI

125
Veit M, Thaa B (2011) Association of influenza virus proteins with membrane rafts. Adv Virol 2011:370606

126
Veit M, Herrler G, Schmidt MF, Rott R, Klenk HD (1990) The hemagglutinating glycoproteins of influenza B and C viruses are acylated with different fatty acids. Virology 177:807–811

DOI

127
Veit M, Kretzschmar E, Kuroda K, Garten W, Schmidt MF, Klenk HD,Rott R (1991) Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin. J Virol 65:2491–2500

128
Veit M, Reverey H, Schmidt MF (1996) Cytoplasmic tail length influences fatty acid selection for acylation of viral glycoproteins. Biochem J 318(Pt 1):163–172

129
Veit M, Serebryakova MV, Kordyukova LV (2013) Palmitoylation of influenza virus proteins. Biochem Soc Trans 41:50–55

DOI

130
Vlasak R, Krystal M, Nacht M, Palese P (1987) The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 160:419–425

DOI

131
Vlasak R, Luytjes W, Spaan W, Palese P (1988) Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. ProcNatl Acad Sci USA 85:4526–4529

DOI

132
Wagaman PC, Spence HA, O’Callaghan RJ (1989) Detection of influenza C virus by using an in situ esterase assay. J Clin Microbiol 27:832–836

133
Wagner R, Herwig A, Azzouz N, Klenk HD (2005) Acylationmediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 79:6449–6458

DOI

134
Waterson AP, Hurrell JM, Jensen KE (1963) The fine structure of influenza A, B and C viruses. Archiv fur die gesamte Virusforschung 12:487–495

DOI

135
Yamaoka M, Hotta H, Itoh M, Homma M (1991) Prevalence of antibody to influenza C virus among pigs in Hyogo Prefecture,Japan. J Gen Virol 72(Pt 3):711–714

136
Yamashita M, Krystal M, Palese P (1988) Evidence that the matrix protein of influenza C virus is coded for by a spliced mRNA. J Virol 62:3348–3355

137
Yamashita M, Krystal M, Palese P (1989) Comparison of the three large polymerase proteins of influenza A, B, and C viruses. Virology 171:458–466

DOI

138
Youzbashi E, Marschall M, Chaloupka I, Meier-Ewert H (1996)Distribution of influenza C virus infection in dogs and pigs in Bavaria. Tierarztl Prax 24:337–342

139
Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ(2008) Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc Natl Acad Sci USA 105:9065–9069

DOI

140
Zhang X, Rosenthal PB, Formanowski F, Fitz W, Wong CH, Meier-Ewert H, Skehel JJ, Wiley DC (1999) X-ray crystallographic determination of the structure of the influenza C virus haemagglutinin-esterase-fusion glycoprotein. Acta Crystallogr D Biol Crystallogr 55:945–961

DOI

141
Zhang J, Pekosz A, Lamb RA (2000) Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 74:4634–4644

DOI

142
Zimmer G, Suguri T, Reuter G, Yu RK, Schauer R, Herrler G (1994) Modification of sialic acids by 9-O-acetylation is detected in human leucocytes using the lectin property of influenza C virus. Glycobiology 4:343–349

DOI

143
Zurcher T, Luo G, Palese P (1994) Mutations at palmitylation sites of the influenza virus hemagglutinin affect virus formation. J Virol 68:5748–5754

Outlines

/