RESEARCH ARTICLE

SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/ 3-targeted ubiquitination and degradation

  • Ming Wang 1 ,
  • Jing Sang 1 ,
  • Yanhua Ren 1 ,
  • Kejia Liu 1 ,
  • Xinyi Liu 2 ,
  • Jian Zhang 2 ,
  • Haolu Wang 3 ,
  • Jian Wang 3 ,
  • Amir Orian 4 ,
  • Jie Yang , 1 ,
  • Jing Yi , 1
Expand
  • 1. Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • 2. Department of Pathophysiology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • 3. Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
  • 4. Faculty of Medicine, Cancer and Vascular Biology Research Center, Technion-Israel Institute of Technology, Haifa 31096, Israel

Received date: 23 Aug 2015

Accepted date: 08 Sep 2015

Published date: 26 Jan 2016

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

SUMOylation is recently found to function as a targeting signal for the degradation of substrates through the ubiquitin-proteasome system. RNF4 is the most studied human SUMO-targeted ubiquitin E3 ligase. However, the relationship between SUMO proteases, SENPs, and RNF4 remains obscure. There are limited examples of the SENP regulation of SUMO2/3-targeted proteolysis mediated by RNF4. The present study investigated the role of SENP3 in the global protein turnover related to SUMO2/3-targeted ubiquitination and focused in particular on the SENP3 regulation of the stability of Sp1. Our data demonstrated that SENP3 impaired the global ubiquitination profile and promoted the accumulation of many proteins. Sp1, a cancer-associated transcription factor, was among these proteins. SENP3 increased the level of Sp1 protein via antagonizing the SUMO2/3-targeted ubiquitination and the consequent proteasome-dependent degradation that was mediated by RNF4. De-conjugation of SUMO2/3 by SENP3 attenuated the interaction of Sp1 with RNF4. In gastric cancer cell lines and specimens derived from patients and nude mice, the level of Sp1 was generally increased in parallel to the level of SENP3. These results provided a new explanation for the enrichment of the Sp1 protein in various cancers, and revealed a regulation of SUMO2/3 conjugated proteins whose levels may be tightly controlled by SENP3 and RNF4.

Cite this article

Ming Wang , Jing Sang , Yanhua Ren , Kejia Liu , Xinyi Liu , Jian Zhang , Haolu Wang , Jian Wang , Amir Orian , Jie Yang , Jing Yi . SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/ 3-targeted ubiquitination and degradation[J]. Protein & Cell, 2016 , 07(01) : 63 -77 . DOI: 10.1007/s13238-015-0216-7

1
Abed M, Bitman-Lotan E, Orian A (2011) A fly view of a SUMO-targeted ubiquitin ligase . Fly 5:340–344

DOI

2
Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1 . Cell 108:345–356

DOI

3
Bossis G, Melchior F(2006)SUMO:regulatingtheregulator . CellDiv 1:13

4
Bouwman P, Philipsen S (2002) Regulation of the activity of Sp1related transcription factors . Mol Cell Endocrinol 195:27–38

DOI

5
Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast . J Biol Chem 278:44113–44120

DOI

6
Cai J, Niu X, Chen Y, Hu Q, Shi G, Wu H, Wang J, Yi J (2008) Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis . Neoplasia 10:41–51

DOI

7
Chang WC, Hung JJ (2012) Functional role of post-translational modifications of Sp1 in tumorigenesis . J Biomed Sci 19:94

DOI

8
Chuang JY, Wang YT, Yeh SH, Liu YW, Chang WC, Hung JJ (2008) Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis . Mol Biol Cell 19:1139–1151

DOI

9
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources . Nat Protoc 4:44–57

DOI

10
Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge . Biochem SocTrans 38:34–39

DOI

11
Drag M, Salvesen GS (2008) DeSUMOylating enzymes–SENPs . IUBMB Life 60:734–742

DOI

12
Erker Y, Neyret-Kahn H, Seeler JS, Dejean A, Atfi A, Levy L (2013) Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation . Mol Cell Biol 33:2163–2177

DOI

13
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer . Nucleic Acids Res 39:D945–D950

14
Geiss-Friedlander R, Melchior F (2007) Conceptsin sumoylation: a decade on . Nat Rev Mol Cell Biol 8:947–956

DOI

15
Geoffroy MC, Hay RT (2009) An additional role for SUMO in ubiquitin-mediated proteolysi s. Nat Rev Mol Cell Biol 10:564–568

DOI

16
Gill G(2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059

17
Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO 3 . J Biol Chem 281:15869–15877

DOI

18
Gong L, Ji WK, Hu XH, Hu WF, Tang XC, Huang ZX, Li L, Liu M, Xiang SH, Wu E (2014) Sumoylation differentially regulates Sp1 to control cell differentiation . Proc Natl Acad Sci U S A 111 (15):5574–5579

19
Guo MM, Hu LH, Wang YQ, Chen P, Huang JG, Lu N, He JH, Liao CG (2013) miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1 . Med Oncol 30:542

DOI

20
Han I, Kudlow JE (1997) Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility . Mol Cell Biol 17:2550–2558

DOI

21
Han Y, Huang C, Sun X,Xiang B , Wang M, Yeh ET, Chen Y, Li H, Shi G, Cang H (2010) SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress . J Biol Chem 285:12906–12915

DOI

22
Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitinlike proteins in protein regulation . Circ Res 100:1276–1291

DOI

23
Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases . Nat Rev Mol Cell Biol 13:755–766

DOI

24
Honda H, Pazin MJ, Ji H, Wernyj RP, Morin PJ(2006)Crucial rolesof Sp1 and epigenetic modifications in the regulation of the CLDN4 promoterin ovariancancercells . JBiolChem 281:21433–21444

25
Huang C, Han Y, Wang Y, Sun X, Yan S, Yeh ET, Chen Y, Cang H, Li H, Shi G (2009) SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation . EMBOJ 28:2748–2762

DOI

26
Hung JJ, Wang YT, Chang WC (2006)Sp1 deacetylation inducedby phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription . Mol Cell Biol 26:1770–1785

DOI

27
Hunter T, Sun H(2008) Crosstalkbetween the SUMO and ubiquitin pathways . Ernst Schering Found Symp Proc 1:1–16

28
Kanai M, Wei D, Li Q, Jia Z, Ajani J, Le X, Yao J, Xie K(2006)Loss of Kruppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression . Clin Cancer Res 12:6395–6402

DOI

29
Keshava Prasad TS, GoelR, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A (2009) Human protein reference database—2009 update. Nucleic Acids Res 37:D767–D772

DOI

30
Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway . Nat Cell Biol 10:547–555

DOI

31
Lee HS, Park CK, Oh E, Erkin OC, Jung HS, Cho MH, Kwon MJ, Chae SW, Kim SH, Wang LH (2013) Low SP1 expression differentially affects intestinal-type compared with diffuse-type gastric adenocarcinoma . PLoS One 8:e55522

32
Li Y, Li B, Zhang Y, Xiang CP, Li YY, Wu XL (2011) Serial observations on an orthotopic gastric cancer model constructed usingimproved implantationtechnique . WorldJ Gastroenterol 17:1442–1447

DOI

33
Lima CD, Reverter D(2008) Structureofthe human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7 . J Biol Chem 283:32045–32055

DOI

34
Liu X, Chen X, Yu X, Tao Y, Bode AM, Dong Z, Cao Y (2013) Regulation of microRNAs by epigenetics and their interplay involved in cancer . J Exp Clin Cancer Res 32:96

DOI

35
Lou Z, O’ReillyS, Liang H, Maher VM, Sleight SD, McCormick JJ(2005) Down-regulation of overexpressed sp1 protein in human fibrosarcoma cell lines inhibits tumorformation . Cancer Res 65:1007–1017

36
Matic I, van Hagen M, Schimmel J, Macek B, Ogg SC, Tatham MH, Hay RT, Lamond AI, Mann M, Vertegaal AC (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy . Mol Cell Proteomics 7:132–144

37
Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases . Trends Biochem Sci 32:286–295

DOI

38
Mukhopadhyay D, Arnaoutov A, Dasso M (2010) The SUMO protease SENP6 is essential for inner kinetochore assembly . J Cell Biol 188:681–692

DOI

39
Ozcan S, Andrali SS, Cantrell JE (2010) Modulation of transcription factor function by O-GlcNAc modification . Biochim Biophys Acta 1799:353–364

DOI

40
Poulsen SL, Hansen RK, Wagner SA, van Cuijk L, van Belle GJ, Streicher W, Wikstrom M, Choudhary C, Houtsmuller AB, Marteijn JA (2013) RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response . JCell Biol 201:797–807

DOI

41
Praefcke GJ, Hofmann K, Dohmen RJ (2012) SUMO playing tag with ubiquitin . Trends Biochem Sci 37:23–31

DOI

42
Ren YH, Liu KJ, Wang M, Yu YN, Yang K, Chen Q, Yu B, Wang W, Li QW, Wang J (2014) De-SUMOylationof FOXC2by SENP3 promotes the epithelial-mesenchymal transition in gastric cancer cells . Oncotarget 5:7093–7104

DOI

43
Sampson DA, Wang M, Matunis MJ (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification . J Biol Chem 276:21664–21669

DOI

44
Sang J, Yang K, Sun Y, Han Y, Cang H, Chen Y, Shi G, Wang K, Zhou J, Wang X(2011) SUMO2and SUMO3 transcriptionis differentially regulated by oxidative stress in an Sp1-dependent manner . BiochemJ 435:489–498

DOI

45
Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal AC (2008) The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle . Mol Cell Proteomics 7:2107–2122

DOI

46
Shepherd R, Forbes SA, Beare D, Bamford S, Cole CG, Ward S, Bindal N, Gunasekaran P, Jia M, KokC Y (2011) Data mining using the Catalogue of Somatic Mutations in Cancer BioMart . Database (Oxford) 2011, bar018

47
Spengler ML, Brattain MG (2006) Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription . J Biol Chem 281:5567–5574

48
Spengler ML, Guo LW, Brattain MG (2008) Phosphorylation mediates Sp1 coupled activities of proteolytic processing, desumoylation and degradation . Cell Cycle 7:623–630

DOI

49
Sriramachandran AM, Dohmen RJ (2014) SUMO-targeted ubiquitin ligases . Biochim Biophys Acta 1843:75–85

DOI

50
Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE (1999)An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro . J Biol Chem 274:15194–15202

DOI

51
Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins . EMBOJ 26:4102–4112

DOI

52
Tan NY, Khachigian LM (2009) Sp1 phosphorylation and its regulation of gene transcription . Mol Cell Biol 29:2483–2488

DOI

53
Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9 . J Biol Chem 276:35368–35374

DOI

54
Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMOspecific E3 ubiquitin ligase required for arsenic-induced PML degradation . Nat Cell Biol 10:538–546

DOI

55
Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin systems:a pleaof no contest . Trends Cell Biol 15:525–532

DOI

56
Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates . J Biol Chem 282:34167–34175

DOI

57
Vij N, Zeitlin PL (2006) Regulation of the ClC-2 lung epithelial chloride channel by glycosylation of SP1 . Am J Respir Cell Mol Biol 34:754–759

DOI

58
Waby JS, Chirakkal H, Yu C, Griffiths GJ, Benson RS, Bingle CD, Corfe BM (2010) Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line . Mol Cancer 9:275

DOI

59
Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer . Clin Cancer Res 9:6371–6380

60
Wang Z, Jones GM, Prelich G (2006) Genetic analysis connects SLX5 and SLX8 to the SUMO pathway in Saccharomyces cerevisiae . Genetics 172:1499–1509

61
Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ (2008) Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein1 proteolytic process . J Mol Biol 380:869–885

DOI

62
Wang YT, Yang WB, Chang WC, Hung JJ (2011) Interplay of posttranslational modifications in Sp1 mediates Sp1 stability during cell cycle progression . J Mol Biol 414:1–14

DOI

63
Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc . Science 291:2376–2378

DOI

64
Yan S, Sun X, Xiang B, Cang H, Kang X, Chen Y, Li H, Shi G,Yeh ET, Wang B (2010) Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90 . EMBOJ 29:3773–3786

DOI

65
Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, Xie K (2004) Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer . Clin Cancer Res 10:4109–4117

DOI

66
Yeh ET, Gong L, Kamitani T (2000) Ubiquitin-like proteins: new wines in new bottles . Gene 248:1–14

Outlines

/