RESEARCH ARTICLE

CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes

  • Puping Liang ,
  • Yanwen Xu ,
  • Xiya Zhang ,
  • Chenhui Ding ,
  • Rui Huang ,
  • Zhen Zhang ,
  • Jie Lv ,
  • Xiaowei Xie ,
  • Yuxi Chen ,
  • Yujing Li ,
  • Ying Sun ,
  • Yaofu Bai ,
  • Zhou Songyang ,
  • Wenbin Ma ,
  • Canquan Zhou ,
  • Junjiu Huang
Expand
  • Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital, and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

Received date: 30 Mar 2015

Accepted date: 01 Apr 2015

Published date: 08 May 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Genome editing tools such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system (Cas) have been widely used to modify genes in model systems including animal zygotes and human cells, and hold tremendous promise for both basic research and clinical applications. To date, a serious knowledge gap remains in our understanding of DNA repair mechanisms in human early embryos, and in the efficiency and potential off-target effects of using technologies such as CRISPR/Cas9 in human pre-implantation embryos. In this report, we used tripronuclear (3PN) zygotes to further investigate CRISPR/Cas9-mediated gene editing in human cells. We found that CRISPR/Cas9 could effectively cleave the endogenous β-globin gene (HBB). However, the efficiency of homologous recombination directed repair (HDR) of HBB was low and the edited embryos were mosaic. Off-target cleavage was also apparent in these 3PN zygotes as revealed by the T7E1 assay and whole-exome sequencing. Furthermore, the endogenous delta-globin gene (HBD), which is homologous to HBB, competed with exogenous donor oligos to act as the repair template, leading to untoward mutations. Our data also indicated that repair of the HBB locus in these embryos occurred preferentially through the non-crossover HDR pathway. Taken together, our work highlights the pressing need to further improve the fidelity and specificity of the CRISPR/Cas9 platform, a prerequisite for any clinical applications of CRSIPR/Cas9-mediated editing.

Cite this article

Puping Liang , Yanwen Xu , Xiya Zhang , Chenhui Ding , Rui Huang , Zhen Zhang , Jie Lv , Xiaowei Xie , Yuxi Chen , Yujing Li , Ying Sun , Yaofu Bai , Zhou Songyang , Wenbin Ma , Canquan Zhou , Junjiu Huang . CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein & Cell, 2015 , 6(5) : 363 -372 . DOI: 10.1007/s13238-015-0153-5

1
Balakier H (1993) Tripronuclear human zygotes: the first cell cycle and subsequent development. Hum Reprod8: 1892-1897

2
Baltimore BD, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M (2015) A prudent path forward for genomic engineering and germline gene modification. Science348: 36-38

DOI

3
Bansal V, Libiger O (2011) A probabilistic method for the detection and genotyping of small indels from population-scale sequence data. Bioinformatics27: 2047-2053

DOI

4
Bredenoord AL, Pennings G, de Wert G (2008) Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Hum Reprod Update14: 669-678

DOI

5
Byrne SM, Ortiz L, Mali P, Aach J, Church GM (2014) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res43: e21

DOI

6
Cao A, Galanello R (2010) Beta-thalassemia. Genet Med12: 61-76

DOI

7
Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res23: 465-472

DOI

8
Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol31: 230-232

DOI

9
Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell40: 179-204

DOI

10
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013) Multiplex genome engineering using CRISPR/Cas systems. Science339: 819-823

DOI

11
Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res41: 9584-9592

DOI

12
Cyranoski D (2015) Ethics of embryo editing divides scientists. Nature519: 272

DOI

13
Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA99: 5261-5266

DOI

14
Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods10: 741-743

DOI

15
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol31: 822-826

DOI

16
Hill RJ, Konigsberg W, Guidotti G, Craig LC (1962) The structure of human hemoglobin. I. The separation of the alpha and beta chains and their amino acid composition. J Biol Chem237: 1549-1554

17
Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken RS (2003) Unbiased whole-genome amplification directly from clinical samples. Genome Res13: 954-964

DOI

18
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol31: 827-832

DOI

19
Hsu PD, Lander ES, Zhang F (2014) Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell157: 1262-1278

DOI

20
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol31: 227-229

DOI

21
Ikmi A, McKinney SA, Delventhal KM, Gibson MC (2014) TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun5: 5486

DOI

22
Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development141(24): 4827-4830

DOI

23
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science337: 816-821

DOI

24
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNAprogrammed genome editing in human cells. Elife2: e00471

DOI

25
Kuwayama M, Vajta G, Ieda S, Kato O (2005) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online11: 608-614

DOI

26
Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don't edit the human germ line. Nature519: 410-411

DOI

27
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics26: 589-595

DOI

28
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X (2013a) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol31: 681-683

DOI

29
Li W, Teng F, Li T, Zhou Q (2013b) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol31: 684-686

DOI

30
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN(2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science345: 1184-1188

DOI

31
Ma Y, Zhang X, Shen B, Lu Y, Chen W, Ma J, Bai L, Huang X, Zhang L (2014) Generating rats with conditional alleles using CRISPR/ Cas9. Cell Res24: 122-125

DOI

32
Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013a) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol31: 833-838

DOI

33
Mali P, Esvelt KM, Church GM (2013b) Cas9 as a versatile tool for engineering biology. Nat Methods10: 957-963

DOI

34
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013c) RNA-guided human genome engineering via Cas9. Science339: 823-826

DOI

35
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res20: 1297-1303

DOI

36
Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol11: 196-207

DOI

37
Munne S, Cohen J (1998) Chromosome abnormalities in human embryos. Hum Reprod Update4: 842-855

DOI

38
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell156: 836-843

DOI

39
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNAprogrammed Cas9 nuclease specificity. Nat Biotechnol31: 839-843

DOI

40
San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem77: 229-257

DOI

41
Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol32: 347-355

DOI

42
Sathananthan AH, Tarin JJ, Gianaroli L, Ng SC, Dharmawardena V, Magli MC, Fernando R, Trounson AO (1999) Development of the human dispermic embryo. Hum Reprod Update5: 553-560

DOI

43
Schechter AN (2008) Hemoglobin research and the origins of molecular medicine. Blood112: 3927-3938

DOI

44
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/ RNA-mediated gene targeting. Cell Res23: 720-723

DOI

45
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods11: 399-402

DOI

46
Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z (2014a) Efficient and allelespecific genome editing of disease loci in human iPSCs. Mol Ther23: 570-577

DOI

47
Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky RA, Zhang K, Cheng L (2014b) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-Based Genome Editing in Human iPSCs. Cell Stem Cell15: 12-13

DOI

48
Suzuki K, Yu C, Qu J, Li M, Yao X, Yuan T, Goebl A, Tang S, Ren R, Aizawa E (2014) Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell15: 31-36

DOI

49
Veres A, Gosis BS, Ding Q, Collins R, Ragavendran A, Brand H, Erdin S, Talkowski ME,Musunuru K (2014) Low incidence of offtarget mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell15: 27-30

DOI

50
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res38: e164

DOI

51
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell153: 910-918

DOI

52
Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell13: 659-662

DOI

53
Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S (2014a) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol32: 670-676

DOI

54
Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D (2014b) Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res25: 67-79

DOI

55
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell154: 1370-1379

DOI

56
Yen ST, Zhang M, Deng JM, Usman SJ, Smith CN, Parker-Thornburg J, Swinton PG, Martin JF, Behringer RR (2014) Somatic mosaicism and allele complexity induced by CRISPR/ Cas9 RNA injections in mouse zygotes. Dev Biol393: 3-9

DOI

Outlines

/