Theoretical and simulation studies on voltage-gated sodium channels
Received date: 04 Feb 2015
Accepted date: 05 Mar 2015
Published date: 11 Jun 2015
Copyright
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.
Yang Li , Haipeng Gong . Theoretical and simulation studies on voltage-gated sodium channels[J]. Protein & Cell, 2015 , 6(6) : 413 -422 . DOI: 10.1007/s13238-015-0152-6
1 |
Allen TW, Andersen OS, Roux B (2004) On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J Gen Physiol124: 679-690
|
2 |
Allen TW, Andersen OS, Roux B (2006) Molecular dynamics—potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophys Chem124: 251-267
|
3 |
Amaral C, Carnevale V, Klein ML, Treptow W (2012) Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations. Proc Natl Acad Sci USA109: 21336-21341
|
4 |
Bagal S, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI
|
5 |
Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci USA111(23): 8428-8433
|
6 |
Barber AF, Carnevale V, Raju SG, Amaral C, Treptow W, Klein ML (2012) Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim Biophys Acta1818: 2120-2125
|
7 |
Bartels C, Karplus M (1998) Probability distributions for complex systems: adaptive umbrella sampling of the potential energy. J Phys Chem B102: 865-880
|
8 |
Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature414: 73-77
|
9 |
Blanchet J, Chahine M (2007) Accessibility of four arginine residues on the S4 segment of the Bacillus halodurans sodium channel. J Membr Biol 215: 169-180
|
10 |
Boiteuxa C, Vorobyov I, French RJ, French C, Yarov-Yarovoy V, Allen TW (2014a) Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA111: 13057-13062
|
11 |
Boiteuxa C, Vorobyov I, Allen TW (2014b) Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA111: 3454-3459
|
12 |
Bostick DL, Brooks CL III (2007) Selectivity in K+ channels is due to topological control of the permeant ion’s coordinated state. Proc Natl Acad Sci USA104: 9260-9265
|
13 |
Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S
|
14 |
Carnevale V, Treptow W, Klein ML (2011) Sodium ion binding sites and hydration in the lumen of a bacterial ion channel from molecular dynamics simulations. J Phys Chem Lett2: 2504-2508
|
15 |
Case D, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2012) AMBER 12, vol 1. University of California, San Francisco, p 3
|
16 |
Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron26: 13-25
|
17 |
Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron67: 915-928
|
18 |
Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol Rev57: 397-409
|
19 |
Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomès R (2013) Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc Natl Acad Sci USA110: 11331-11336
|
20 |
Chen R, Chung SH (2012a) Binding modes of muconotoxin to the bacterial sodium channel (NaVAb). Biophys J102: 483-488
|
21 |
Chen R, Chung SH (2012b) Conserved functional surface of antimammalian scorpion beta-toxins. J Phys Chem B116: 4796-4800
|
22 |
Chen R, Chung SH (2014) Mechanism of tetrodotoxin block and resistance in sodium channels. Biochem Biophys Res Commun446: 370-374
|
23 |
Clare JJ, Tate SN, Nobbs M, Romanos MA (2000) Voltage-gated sodium channels as therapeutic targets. Drug Discov Today5: 506-520
|
24 |
Corry B, Thomas M (2012) Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J Am Chem Soc134: 1840-1846
|
25 |
DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA (2008) Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc Natl Acad Sci USA105: 15142-15147
|
26 |
DeCaen PG, Yarov-Yarovoy V, Sharp EM, Scheuer T, Catterall WA (2009) Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc Natl Acad Sci USA106: 22498-22503
|
27 |
Delemotte L, Treptow W, Klein ML, Tarek M (2010) Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J99: L72-L74
|
28 |
Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W (2011) Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA108: 6109-6114
|
29 |
Delemotte L, Kasimova MA, Klein ML, Tarek M, Carnevale V (2015) Free-energy landscape of ion-channel voltage-sensor-domain activation. Proc Natl Acad Sci USA112: 124-129
|
30 |
Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci33: 325-347
|
31 |
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science280: 69-77
|
32 |
Dudev T, Lim C (2010) Factors governing the Na(+) vs K(+) selectivity in sodium ion channels. J Am Chem Soc132: 2321-2332
|
33 |
Dudev T, Lim C (2012) Why voltage-gated Ca2+ and bacterial Na+ channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. Phys Chem Chem Phys14: 12451-12456
|
34 |
Dudev T, Lim C (2014) Evolution of eukaryotic ion channels: principles underlying the conversion of Ca2+-selective to Na+-selective channels. J Am Chem Soc136: 3553-3559
|
35 |
Eisenman G, Horn R (1983) Ionic selectivity revisited—the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol76: 197-225
|
36 |
Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez- Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L
|
37 |
Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J71: 3110-3125
|
38 |
Fowler PW, Tai K, Sansom MS (2008) The selectivity of K+ ion channels: testing the hypotheses. Biophys J95: 5062-5072
|
39 |
Furini S, Domene C (2012) On conduction in a bacterial sodium channel. PLoS Comput Biol8: e1002476
|
40 |
Furini S, Domene C (2013) K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations. Biophys J105: 1737-1745
|
41 |
Furini S, Barbini P, Domene C (2014) Effects of the protonation state of the EEEE motif of a bacterial NaD-channel on conduction and pore structure. Biophys J106: 2175-2183
|
42 |
Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stuhmer W, Tytgat J, Gurevitz M (2007) The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon49: 452-472
|
43 |
Gordon D, Chen R, Chung SH (2013) Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev93: 767-802
|
44 |
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W
|
45 |
Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys120: 11919-11929
|
46 |
Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput4: 435-447
|
47 |
Hille B (2001) Ion channels of excitable membranes, vol 507. Sinauer, Sunderland
|
48 |
Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol117: 500-544
|
49 |
Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol128: 61-88
|
50 |
Isacoff EY, Jan LY, Minor DL (2013) Conduits of life’s spark: a perspective on ion channel research since the birth of neuron. Neuron80: 658-674
|
51 |
Jensen MO, Borhani DW, Lindorff-Larsen K, Maragakis P, Jogini V, Eastwood MP, Dror RO, Shaw DE (2010) Principles of conduction and hydrophobic gating in K+ channels. Proc Natl Acad Sci USA107: 5833-5838
|
52 |
Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science336: 229-233
|
53 |
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature417: 515-522
|
54 |
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature423: 33-41
|
55 |
Jiang W, Hardy DJ, Phillips JC, MacKerell AD, Schulten K, Roux B (2011) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J Phys Chem Lett2: 87-92
|
56 |
Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F (2015) From foe to friend: using animal toxins to investigate ion channel function. J Mol Biol427: 158-175
|
57 |
Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA102: 6679-6685
|
58 |
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol9: 646-652
|
59 |
Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature347: 631-639
|
60 |
Ke S, Zangerl EM, Stary-Weinzinger A (2013) Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel Na(V)Ab. Biochem Biophys Res Commun430: 1272-1276
|
61 |
Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel)4: 1236-1260
|
62 |
Kuzmenkin A, Bezanilla F, Correa AM (2004) Gating of the bacterial sodium channel, NaChBac: voltage-dependent charge movement and gating currents. J Gen Physiol124: 349-356
|
63 |
Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys71: 126601
|
64 |
Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J66: 1-13
|
65 |
Lipkind GM, Fozzard HA (2008) Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. J Gen Physiol131: 523-529
|
66 |
Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science309: 897-903
|
67 |
Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature450: 376-382
|
68 |
Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol9: 413-424
|
69 |
Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys125: 24106
|
70 |
McCormack K, Santos S, Chapman ML, Krafte DS, Marron BE, West CW, Krambis MJ, Antonio BM, Zellmer SG, Printzenhoff D
|
71 |
McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltagegated sodium channel pore reveals mechanisms of opening and closing. Nat Commun3: 1102
|
72 |
Moreau A, Gosselin-Badaroudine P, Chahine M (2014) Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol5: 53
|
73 |
Noskov SY, Roux B (2006) Ion selectivity in potassium channels. Biophys Chem124: 279-291
|
74 |
Noskov SY, Berneche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature431: 830-834
|
75 |
Payandeh J, Minor DL Jr (2015) Bacterial voltage-gated sodium channels (BacNas) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol427: 3-30
|
76 |
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature475: 353-358
|
77 |
Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature486: 135-139
|
78 |
Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC Jr (1998) Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule. Biophys J75: 2647-2657
|
79 |
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem26: 1781-1802
|
80 |
Piccinini E, Ceccarelli M, Affinito F, Brunetti R, Jacoboni C (2008) Biased molecular simulations for free-energy mapping: a comparison on the KcsA channel as a test case. J Chem Theory Comput4: 173-183
|
81 |
Qiu H, Shen R, Guo W (2012) Ion solvation and structural stability in a sodium channel investigated by molecular dynamics calculations. Biochim Biophys Acta1818: 2529-2535
|
82 |
Ragsdale DS, Avoli M (1998) Sodium channels as molecular targets for antiepileptic drugs. Brain Res Rev26: 16-28
|
83 |
Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science294: 2372-2375
|
84 |
Roux B, MacKinnon R (1999) The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science285: 100-102
|
85 |
Saparov SM, Pohl P (2004) Beyond the diffusion limit: water flow through the empty bacterial potassium channel. Proc Natl Acad Sci USA101: 4805-4809
|
86 |
Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol65: 133-159
|
87 |
Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature409: 1047-1051
|
88 |
Schlief T, Schonherr R, Imoto K, Heinemann SH (1996) Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. Eur Biophys J25: 75-91
|
89 |
Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol426: 467-483
|
90 |
Shrivastava IH, Sansom MSP (2000) Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J78: 557-570
|
91 |
Sontheimer H, Black JA, Waxman SG (1996) Voltage-gated Na+ channels in glia: properties and possible functions. Trends Neurosci19: 325-331
|
92 |
Stevens M, Peigneur S, Tytgat J (2011) Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol2: 71
|
93 |
Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J (2012) Design of bioactive peptides from naturally occurring muconotoxin structures. J Biol Chem287: 31382-31392
|
94 |
Stock L, Delemotte L, Carnevale V, Treptow W, Klein ML (2013) Conduction in a biological sodium selective channel. J Phys Chem B117: 3782-3789
|
95 |
Sun YM, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol110: 693-715
|
96 |
Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science328: 67-73
|
97 |
Thottumkara AP, Parsons WH, Du Bois J (2014) Saxitoxin. Angew Chem Int Ed Engl53: 5760-5784
|
98 |
Tikhonov DB, Zhorov BS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol Pharmacol82: 97-104
|
99 |
Treptow W, Tarek M (2006) Environment of the gating charges in the Kv1.2 Shaker potassium channel. Biophys J90: L64-L66
|
100 |
Ulmschneider MB, Bagneris C, McCusker EC, DeCaen PG, Delling M, Clapham DE, Ulmschneider JP, Wallace BA (2013) Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA110: 6364-6369
|
101 |
Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F
|
102 |
Xia M, Liu H, Li Y, Yan N, Gong H (2013) The mechanism of Na(+)/ K(+) selectivity in mammalian voltage-gated sodium channels based on molecular dynamics simulation. Biophys J104: 2401-2409
|
103 |
Yarov-Yarovoy V, DeCaen PG, Westenbroek RE, Pan CY, Scheuer T, Baker D, Catterall WA (2012) Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc Natl Acad Sci USA109: E93-E102
|
104 |
Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE2004: re15
|
105 |
Zhang X, Yan N (2013) The conformational shifts of the voltage sensing domains between NavRh and NavAb. Cell Res: 444
|
106 |
Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J
|
107 |
Zhang X, Xia MD, Li Y, Liu HH, Jiang X, Ren WL, Wu JP, DeCaen P, Yu F, Huang S
|
108 |
Zheng L, Chen M, Yang W (2008) Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proc Natl Acad Sci USA105: 20227-20232
|
109 |
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 A resolution. Nature414: 43-48
|
/
〈 | 〉 |