REVIEW

Theoretical and simulation studies on voltage-gated sodium channels

  • Yang Li ,
  • Haipeng Gong
Expand
  • MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 04 Feb 2015

Accepted date: 05 Mar 2015

Published date: 11 Jun 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.

Cite this article

Yang Li , Haipeng Gong . Theoretical and simulation studies on voltage-gated sodium channels[J]. Protein & Cell, 2015 , 6(6) : 413 -422 . DOI: 10.1007/s13238-015-0152-6

1
Allen TW, Andersen OS, Roux B (2004) On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J Gen Physiol124: 679-690

DOI

2
Allen TW, Andersen OS, Roux B (2006) Molecular dynamics—potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophys Chem124: 251-267

DOI

3
Amaral C, Carnevale V, Klein ML, Treptow W (2012) Exploring conformational states of the bacterial voltage-gated sodium channel NavAb via molecular dynamics simulations. Proc Natl Acad Sci USA109: 21336-21341

DOI

4
Bagal S, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI (2013) Ion channels as therapeutic targets: a drug discovery perspective. J Med Chem56: 593-624

DOI

5
Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci USA111(23): 8428-8433

DOI

6
Barber AF, Carnevale V, Raju SG, Amaral C, Treptow W, Klein ML (2012) Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim Biophys Acta1818: 2120-2125

DOI

7
Bartels C, Karplus M (1998) Probability distributions for complex systems: adaptive umbrella sampling of the potential energy. J Phys Chem B102: 865-880

DOI

8
Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature414: 73-77

DOI

9
Blanchet J, Chahine M (2007) Accessibility of four arginine residues on the S4 segment of the Bacillus halodurans sodium channel. J Membr Biol 215: 169-180

DOI

10
Boiteuxa C, Vorobyov I, French RJ, French C, Yarov-Yarovoy V, Allen TW (2014a) Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA111: 13057-13062

DOI

11
Boiteuxa C, Vorobyov I, Allen TW (2014b) Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA111: 3454-3459

DOI

12
Bostick DL, Brooks CL III (2007) Selectivity in K+ channels is due to topological control of the permeant ion’s coordinated state. Proc Natl Acad Sci USA104: 9260-9265

DOI

13
Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S (2009) CHARMM: the biomolecular simulation program. J Comput Chem30: 1545-1614

DOI

14
Carnevale V, Treptow W, Klein ML (2011) Sodium ion binding sites and hydration in the lumen of a bacterial ion channel from molecular dynamics simulations. J Phys Chem Lett2: 2504-2508

DOI

15
Case D, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2012) AMBER 12, vol 1. University of California, San Francisco, p 3

16
Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron26: 13-25

DOI

17
Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron67: 915-928

DOI

18
Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol Rev57: 397-409

DOI

19
Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomès R (2013) Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc Natl Acad Sci USA110: 11331-11336

DOI

20
Chen R, Chung SH (2012a) Binding modes of muconotoxin to the bacterial sodium channel (NaVAb). Biophys J102: 483-488

DOI

21
Chen R, Chung SH (2012b) Conserved functional surface of antimammalian scorpion beta-toxins. J Phys Chem B116: 4796-4800

DOI

22
Chen R, Chung SH (2014) Mechanism of tetrodotoxin block and resistance in sodium channels. Biochem Biophys Res Commun446: 370-374

DOI

23
Clare JJ, Tate SN, Nobbs M, Romanos MA (2000) Voltage-gated sodium channels as therapeutic targets. Drug Discov Today5: 506-520

DOI

24
Corry B, Thomas M (2012) Mechanism of ion permeation and selectivity in a voltage gated sodium channel. J Am Chem Soc134: 1840-1846

DOI

25
DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA (2008) Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc Natl Acad Sci USA105: 15142-15147

DOI

26
DeCaen PG, Yarov-Yarovoy V, Sharp EM, Scheuer T, Catterall WA (2009) Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc Natl Acad Sci USA106: 22498-22503

DOI

27
Delemotte L, Treptow W, Klein ML, Tarek M (2010) Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J99: L72-L74

DOI

28
Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W (2011) Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci USA108: 6109-6114

DOI

29
Delemotte L, Kasimova MA, Klein ML, Tarek M, Carnevale V (2015) Free-energy landscape of ion-channel voltage-sensor-domain activation. Proc Natl Acad Sci USA112: 124-129

DOI

30
Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci33: 325-347

DOI

31
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science280: 69-77

DOI

32
Dudev T, Lim C (2010) Factors governing the Na(+) vs K(+) selectivity in sodium ion channels. J Am Chem Soc132: 2321-2332

DOI

33
Dudev T, Lim C (2012) Why voltage-gated Ca2+ and bacterial Na+ channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. Phys Chem Chem Phys14: 12451-12456

DOI

34
Dudev T, Lim C (2014) Evolution of eukaryotic ion channels: principles underlying the conversion of Ca2+-selective to Na+-selective channels. J Am Chem Soc136: 3553-3559

DOI

35
Eisenman G, Horn R (1983) Ionic selectivity revisited—the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol76: 197-225

DOI

36
Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez- Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L (2000) Nomenclature of voltage-gated calcium channels. Neuron25: 533-535

DOI

37
Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J71: 3110-3125

DOI

38
Fowler PW, Tai K, Sansom MS (2008) The selectivity of K+ ion channels: testing the hypotheses. Biophys J95: 5062-5072

DOI

39
Furini S, Domene C (2012) On conduction in a bacterial sodium channel. PLoS Comput Biol8: e1002476

DOI

40
Furini S, Domene C (2013) K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations. Biophys J105: 1737-1745

DOI

41
Furini S, Barbini P, Domene C (2014) Effects of the protonation state of the EEEE motif of a bacterial NaD-channel on conduction and pore structure. Biophys J106: 2175-2183

DOI

42
Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stuhmer W, Tytgat J, Gurevitz M (2007) The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon49: 452-472

DOI

43
Gordon D, Chen R, Chung SH (2013) Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev93: 767-802

DOI

44
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev57: 473-508

DOI

45
Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys120: 11919-11929

DOI

46
Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput4: 435-447

DOI

47
Hille B (2001) Ion channels of excitable membranes, vol 507. Sinauer, Sunderland

48
Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol117: 500-544

DOI

49
Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol128: 61-88

DOI

50
Isacoff EY, Jan LY, Minor DL (2013) Conduits of life’s spark: a perspective on ion channel research since the birth of neuron. Neuron80: 658-674

DOI

51
Jensen MO, Borhani DW, Lindorff-Larsen K, Maragakis P, Jogini V, Eastwood MP, Dror RO, Shaw DE (2010) Principles of conduction and hydrophobic gating in K+ channels. Proc Natl Acad Sci USA107: 5833-5838

DOI

52
Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science336: 229-233

DOI

53
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature417: 515-522

DOI

54
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature423: 33-41

DOI

55
Jiang W, Hardy DJ, Phillips JC, MacKerell AD, Schulten K, Roux B (2011) High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J Phys Chem Lett2: 87-92

DOI

56
Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F (2015) From foe to friend: using animal toxins to investigate ion channel function. J Mol Biol427: 158-175

DOI

57
Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA102: 6679-6685

DOI

58
Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol9: 646-652

DOI

59
Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature347: 631-639

DOI

60
Ke S, Zangerl EM, Stary-Weinzinger A (2013) Distinct interactions of Na+ and Ca2+ ions with the selectivity filter of the bacterial sodium channel Na(V)Ab. Biochem Biophys Res Commun430: 1272-1276

DOI

61
Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel)4: 1236-1260

DOI

62
Kuzmenkin A, Bezanilla F, Correa AM (2004) Gating of the bacterial sodium channel, NaChBac: voltage-dependent charge movement and gating currents. J Gen Physiol124: 349-356

DOI

63
Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys71: 126601

DOI

64
Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J66: 1-13

DOI

65
Lipkind GM, Fozzard HA (2008) Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. J Gen Physiol131: 523-529

DOI

66
Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science309: 897-903

DOI

67
Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature450: 376-382

DOI

68
Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol9: 413-424

DOI

69
Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys125: 24106

DOI

70
McCormack K, Santos S, Chapman ML, Krafte DS, Marron BE, West CW, Krambis MJ, Antonio BM, Zellmer SG, Printzenhoff D (2013) Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci USA110: E2724-E2732

DOI

71
McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltagegated sodium channel pore reveals mechanisms of opening and closing. Nat Commun3: 1102

DOI

72
Moreau A, Gosselin-Badaroudine P, Chahine M (2014) Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol5: 53

DOI

73
Noskov SY, Roux B (2006) Ion selectivity in potassium channels. Biophys Chem124: 279-291

DOI

74
Noskov SY, Berneche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature431: 830-834

DOI

75
Payandeh J, Minor DL Jr (2015) Bacterial voltage-gated sodium channels (BacNas) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol427: 3-30

DOI

76
Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature475: 353-358

DOI

77
Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature486: 135-139

DOI

78
Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC Jr (1998) Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule. Biophys J75: 2647-2657

DOI

79
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem26: 1781-1802

DOI

80
Piccinini E, Ceccarelli M, Affinito F, Brunetti R, Jacoboni C (2008) Biased molecular simulations for free-energy mapping: a comparison on the KcsA channel as a test case. J Chem Theory Comput4: 173-183

DOI

81
Qiu H, Shen R, Guo W (2012) Ion solvation and structural stability in a sodium channel investigated by molecular dynamics calculations. Biochim Biophys Acta1818: 2529-2535

DOI

82
Ragsdale DS, Avoli M (1998) Sodium channels as molecular targets for antiepileptic drugs. Brain Res Rev26: 16-28

DOI

83
Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science294: 2372-2375

DOI

84
Roux B, MacKinnon R (1999) The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science285: 100-102

DOI

85
Saparov SM, Pohl P (2004) Beyond the diffusion limit: water flow through the empty bacterial potassium channel. Proc Natl Acad Sci USA101: 4805-4809

DOI

86
Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol65: 133-159

DOI

87
Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature409: 1047-1051

DOI

88
Schlief T, Schonherr R, Imoto K, Heinemann SH (1996) Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. Eur Biophys J25: 75-91

DOI

89
Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol426: 467-483

DOI

90
Shrivastava IH, Sansom MSP (2000) Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J78: 557-570

DOI

91
Sontheimer H, Black JA, Waxman SG (1996) Voltage-gated Na+ channels in glia: properties and possible functions. Trends Neurosci19: 325-331

DOI

92
Stevens M, Peigneur S, Tytgat J (2011) Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol2: 71

DOI

93
Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J (2012) Design of bioactive peptides from naturally occurring muconotoxin structures. J Biol Chem287: 31382-31392

DOI

94
Stock L, Delemotte L, Carnevale V, Treptow W, Klein ML (2013) Conduction in a biological sodium selective channel. J Phys Chem B117: 3782-3789

DOI

95
Sun YM, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel—effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol110: 693-715

DOI

96
Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science328: 67-73

DOI

97
Thottumkara AP, Parsons WH, Du Bois J (2014) Saxitoxin. Angew Chem Int Ed Engl53: 5760-5784

DOI

98
Tikhonov DB, Zhorov BS (2012) Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure. Mol Pharmacol82: 97-104

DOI

99
Treptow W, Tarek M (2006) Environment of the gating charges in the Kv1.2 Shaker potassium channel. Biophys J90: L64-L66

DOI

100
Ulmschneider MB, Bagneris C, McCusker EC, DeCaen PG, Delling M, Clapham DE, Ulmschneider JP, Wallace BA (2013) Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci USA110: 6364-6369

DOI

101
Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F (2012) An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J Gen Physiol140: 587-594

DOI

102
Xia M, Liu H, Li Y, Yan N, Gong H (2013) The mechanism of Na(+)/ K(+) selectivity in mammalian voltage-gated sodium channels based on molecular dynamics simulation. Biophys J104: 2401-2409

DOI

103
Yarov-Yarovoy V, DeCaen PG, Westenbroek RE, Pan CY, Scheuer T, Baker D, Catterall WA (2012) Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc Natl Acad Sci USA109: E93-E102

DOI

104
Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE2004: re15

DOI

105
Zhang X, Yan N (2013) The conformational shifts of the voltage sensing domains between NavRh and NavAb. Cell Res: 444

DOI

106
Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature486: 130-134

DOI

107
Zhang X, Xia MD, Li Y, Liu HH, Jiang X, Ren WL, Wu JP, DeCaen P, Yu F, Huang S (2013) Analysis of the selectivity filter of the voltage-gated sodium channel NavRh. Cell Res23: 409-422

DOI

108
Zheng L, Chen M, Yang W (2008) Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proc Natl Acad Sci USA105: 20227-20232

DOI

109
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 A resolution. Nature414: 43-48

DOI

Outlines

/