RESEARCH ARTICLE

Molecular dynamics and principal components of potassium binding with human telomeric intra-molecular G-quadruplex

  • Zhiguo Wang , 1 ,
  • Ruping Chen 1,2 ,
  • Ling Hou 1 ,
  • Jianfeng Li 1 ,
  • Jun-Ping Liu , 1,2,3,4
Expand
  • 1. Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
  • 2. School of Medicine, Shandong University, Jinan 250100, China
  • 3. Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, VIC 3004, Australia
  • 4. Center for Cancer Research, Monash Institute of Medical Research, Clayton, VIC 3168, Australia

Received date: 01 Jan 2015

Accepted date: 10 Mar 2015

Published date: 11 Jun 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Telomere assumes intra-molecular G-quadruplex that is a significant drug target for inhibiting telomerase maintenance of telomeres in cancer. Metal cations have been recognized as playing important roles in stabilizing G-quadruplex, but their binding processes to human telomeric G-quadruplex remain uncharacterized. To investigate the detailed binding procedures, molecular dynamics simulations were conducted on the hybrid [3+ 1] form-one human telomeric intra-molecular G-quadruplex. We show here that the binding of a potassium ion to a G-tetrad core is mediated by two alternative pathways. Principal component analysis illustrated the dominant concerted motions of G-quadruplex occurred at the loop domains. MM-PBSA calculations revealed that binding was energetically favorable and driven by the electrostatic interactions. The lower binding site was found more constructive favorable for binding. Our data provide useful information on a potassium-mediated stable structure of human telomeric intra-molecular G-quadruplex, implicating in ion disorder associated conformational changes and targeted drug design.

Cite this article

Zhiguo Wang , Ruping Chen , Ling Hou , Jianfeng Li , Jun-Ping Liu . Molecular dynamics and principal components of potassium binding with human telomeric intra-molecular G-quadruplex[J]. Protein & Cell, 2015 , 6(6) : 423 -433 . DOI: 10.1007/s13238-015-0155-3

1
Akhshi P, Acton G, Wu G (2012) Molecular dynamics simulations to provide new insights into the asymmetrical ammonium ion movement inside of the [d(G3T4G4)]2 G-quadruplex DNA structure. J Phys Chem B116: 9363-9370

DOI

2
Amadei A, Linssen A, Berendsen HJ (1993) Essential dynamics of proteins. Proteins17: 412-425

DOI

3
Bejugam M, Sewitz S, Shirude PS, Rodriguez R, Shahid R, Balasubramanian S (2007) Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression. J Am Chem Soc129: 12926-12927

DOI

4
Bončina M, Lah J, Prislan I, Vesnaver G (2012) Energetic basis of human telomeric DNA folding into G-quadruplex structures. J Am Chem Soc134: 9657-9663

DOI

5
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res34: 5402-5415

DOI

6
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J ComputChem26: 1668-1688

DOI

7
Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D (2006) An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc128: 1096-1098

DOI

8
Dexheimer TS, Sun D, Hurley LH (2006) Deconvoluting the structural and drug-recognition complexity of the G-quadruplexforming region upstream of the BCL-2 P1 promoter. J Am Chem Soc128: 5404-5415

DOI

9
Fadrná E, Špačková N, Štefl R, Koča J, Cheatham TE, Šponer J (2004) Molecular dynamics simulations of guanine quadruplex loops: advances and force field limitations. Biophys J87: 227-242

DOI

10
Fadrná E, Špačková N, Sarzynska J, Koca J, Orozco M, Cheatham TE III, Kulinski T, Sponer J (2009) Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force fields. J Chem Theory Comput5: 2514-2530

DOI

11
Gaynutdinov TI, Neumann RD, Panyutin IG (2008) Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences. Nucleic Acids Res36: 4079-4087

DOI

12
Gilson MK, Sharp KA, Honig BH (1988) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem9: 327-335

DOI

13
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph14: 33-38

DOI

14
Li H, Cao E, Gisler T (2009) Force-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study. Biochem. Biophys Res Commun379: 70-75

DOI

15
Maizels N (2006) Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol13: 1055-1059

DOI

16
Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell88: 657-666

DOI

17
Mongan J (2004) Interactive essential dynamics. J Comput Aid Mol Des18: 433-436

DOI

18
Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA85: 6622-6626

DOI

19
Neidle S, Parkinson GN (2003) The structure of telomeric DNA. Curr Opin Struc Biol13: 275-283

DOI

20
Oganesian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays29: 155-165

DOI

21
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol12: 847-854

DOI

22
Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J92: 3817-3829

DOI

23
Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res34: 5715-5719

DOI

24
Phan AT, Kuryavyi V, Burge S, Neidle S, Patel DJ (2007a) Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J Am Chem Soc129: 4386-4392

DOI

25
Phan AT, Kuryavyi V, Luu KN, Patel DJ (2007b) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res35: 6517-6525

DOI

26
Pinnavaia T, Marshall CL, Mettler CM, Fisk CL, Miles HT, Becker ED (1978) Alkali metal ion specificity in the solution ordering of a nucleotide, 5′-guanosine monophosphate. J Am Chem Soc100: 3625-3627

DOI

27
Rajendran A, Endo M, Hidaka K, Sugiyama H (2014) Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. Angew Chem Int Ed53: 4107-4112

DOI

28
Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, Ladame S, Balasubramanian S, Neidle S (2005) Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc127: 10584-10589

DOI

29
Reshetnikov RV, Sponer J, Rassokhina OI, Kopylov AM, Tsvetkov PO, Makarov AA, Golovin AV (2011) Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Res39: 9789-9802

DOI

30
Rujan IN, Meleney JC, Bolton PH (2005) Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium. Nucleic Acids Res33: 2022-2031

DOI

31
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA99: 11593-11598

DOI

32
Špačková N, Berger I, Šponer J (1999) Nanosecond molecular dynamics simulations of parallel and antiparallel guanine quadruplex DNA molecules. J Am Chem Soc121: 5519-5534

DOI

33
Špačková N, Berger I, Šponer J (2001) Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations. J Am Chem Soc123: 3295-3307

DOI

34
Williamson JR (1994) G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct23: 703-730

DOI

35
Yang Y, Shen Y, Liu H, Yao X (2011) Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38α MAP kinase. J Chem Inf Model51: 3235-3246

DOI

36
Zhu H, Xiao S, Liang H (2013) Structural dynamics of human telomeric G-quadruplex loops studied by molecular dynamics simulations. PLoS One8: e71380

DOI

Outlines

/