RESEARCH ARTICLE

Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors

  • Yu Dong 1,2 ,
  • Xiaodi Qiu 1,2 ,
  • Neil Shaw 1,3 ,
  • Yueyang Xu 4 ,
  • Yuna Sun 1 ,
  • Xuemei Li 1 ,
  • Jun Li , 1 ,
  • Zihe Rao , 1,3,4
Expand
  • 1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Structure Biology Laboratory, Tsinghua University, Beijing 100084, China
  • 4. Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China

Received date: 17 Apr 2015

Accepted date: 08 May 2015

Published date: 27 Jul 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Dehydration is one of the key steps in the biosynthesis of mycolic acids and is vital to the growth of Mycobacterium tuberculosis (Mtb). Consequently, stalling dehydration cures tuberculosis (TB). Clinically used anti-TB drugs like thiacetazone (TAC) and isoxyl (ISO) as well as flavonoids inhibit the enzyme activity of the β-hydroxyacyl-ACP dehydratase HadAB complex. How this inhibition is exerted, has remained an enigma for years. Here, we describe the first crystal structures of the MtbHadAB complex bound with flavonoid inhibitor butein, 2’,4,4’-trihydroxychalcone or fisetin. Despite sharing no sequence identity from Blast, HadA and HadB adopt a very similar hotdog fold. HadA forms a tight dimer with HadB in which the proteins are sitting side-by-side, but are oriented anti-parallel. While HadB contributes the catalytically critical His-Asp dyad, HadA binds the fatty acid substrate in a long channel. The atypical double hotdog fold with a single active site formed by MtbHadAB gives rise to a long, narrow cavity that vertically traverses the fatty acid binding channel. At the base of this cavity lies Cys61, which upon mutation to Ser confers drug-resistance in TB patients. We show that inhibitors bind in this cavity and protrude into the substrate binding channel. Thus, inhibitors of MtbHadAB exert their effect by occluding substrate from the active site. The unveiling of this mechanism of inhibition paves the way for accelerating development of next generation of anti-TB drugs.

Cite this article

Yu Dong , Xiaodi Qiu , Neil Shaw , Yueyang Xu , Yuna Sun , Xuemei Li , Jun Li , Zihe Rao . Molecular basis for the inhibition of β-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis by flavonoid inhibitors[J]. Protein & Cell, 2015 , 6(7) : 504 -517 . DOI: 10.1007/s13238-015-0181-1

1
Asselineau C, Asselineau J, Lanéelle G, Lanéelle MA (2002) The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses. Prog Lipid Res41: 501-523

DOI

2
Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science263: 227-230

DOI

3
Belardinelli JM, Morbidoni HR (2012) Mutations in the essential FAS II beta-hydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii. Mol Microbiol86: 568-579

DOI

4
Benning MM, Wesenberg G, Liu R, Taylor KL, Dunaway-Mariano D, Holden HM (1998) The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. Strain CBS-3. J Biol Chem273: 33572-33579

DOI

5
Bhatt A, Molle V, Besra GS, Jacobs WR Jr, Kremer L (2007) The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol64: 1442-1454

DOI

6
Bloch K (1977) Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol45: 1-84

DOI

7
Brown AK, Bhatt A, Singh A, Saparia E, Evans AF, Besra GS (2007a) Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology153: 4166-4173

DOI

8
Brown AK, Papaemmanouil A, Bhowruth V, Bhatt A, Dover LG, Besra GS (2007b) Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology153: 3314-3322

DOI

9
Campbell JW, Cronan JE Jr (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol55: 305-332

DOI

10
Cantaloube S, Veyron-Churlet R, Haddache N, Daffé M, Zerbib D (2011) The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS One6: e29564

DOI

11
Carel C, Nukdee K, Cantaloube S, Bonne M, Diagne CT, Laval F, Zerbib D (2014) Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS One9: e97148

DOI

12
Castell A, Johansson P, Unge T, Jones TA, Backbro K (2005) Rv0216, a conserved hypothetical protein from Mycobacterium tuberculosis that is essential for bacterial survival during infection, has a double hotdog fold. Protein Sci14: 1850-1862

DOI

13
Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog5: e1000600

DOI

14
Coxon GD, Craig D, Corrales RM, Vialla E, Gannoun-Zaki L, Kremer L (2013) Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues. PLoS One8: e53162

DOI

15
Dillon SC, Bateman A(2004) TheHotdog fold: wrapping upa superfamily of thioesterases and dehydratases. BMC Bioinform5: 109

DOI

16
Dover LG, Alahari A, Gratraud P, Gomes JM, Bhowruth V, Reynolds RC, Besra GS, Kremer L (2007) EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob Agents Chemother51: 1055-1063

DOI

17
Echols N, Grosse-Kunstleve RW, Afonine PV, Bunkoczi G, Chen VB, Headd JJ, McCoy AJ, Moriarty NW, Read RJ, Richardson DC (2012) Graphical tools for macromolecular crystallography in PHENIX. J Appl Crystallogr45: 581-586

DOI

18
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr60: 2126-2132

DOI

19
Gannoun-Zaki L, Alibaud L, Kremer L (2013) Point mutations within the fatty acid synthase type II dehydratase components HadA or HadC contribute to isoxyl resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother57: 629-632

DOI

20
Gao LY, Laval F, Lawson EH, Groger RK, Woodruff A, Morisaki JH, Cox JS, Daffe M, Brown EJ (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol49: 1547-1563

DOI

21
Goldberg DE, Siliciano RF, Jacobs WR Jr (2012) Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell148: 1271-1283

DOI

22
Grzegorzewicz AE, Kordulakova J, Jones V, Born SE, Belardinelli JM, Vaquie A, Gundi VA, Madacki J, Slama N, Laval F (2012) A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J Biol Chem287: 38434-38441

DOI

23
He L, Zhang L, Liu X, Li X, Zheng M, Li H, Yu K, Chen K, Shen X, Jiang H (2009) Discovering potent inhibitors against the beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Helicobacter pylori: structure-based design, synthesis, bioassay, and crystal structure determination. J Med Chem52: 2465-2481

DOI

24
Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res38: W545-W549

DOI

25
Jackson M, McNeil MR, Brennan PJ (2013) Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol8: 855-875

DOI

26
Jenni S, Leibundgut M, Boehringer D, Frick C, Mikolasek B, Ban N (2007) Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science316: 254-261

DOI

27
Jiang D, Zhang Q, Zheng Q, Zhou H, Jin J, Zhou W, Bartlam M, Rao Z (2014) Structural analysis of Mycobacterium tuberculosis ATPbinding cassette transporter subunit UgpB reveals specificity for glycerophosphocholine. FEBS J281: 331-341

DOI

28
Kimber MS, Martin F, Lu Y, Houston S, Vedadi M, Dharamsi A, Fiebig KM, Schmid M, Rock CO (2004) The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa. J Biol Chem279: 52593-52602

DOI

29
Kirkpatrick AS, Yokoyama T, Choi KJ, Yeo HJ (2009) Campylobacter jejuni fatty acid synthase II: structural and functional analysis of beta-hydroxyacyl-ACP dehydratase (FabZ). Biochem Biophys Res Commun380: 407-412

DOI

30
Kordulakova J, Janin YL, Liav A, Barilone N, Dos Vultos T, Rauzier J, Brennan PJ, Gicquel B, Jackson M (2007) Isoxyl activation is required for bacteriostatic activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother51: 3824-3829

DOI

31
Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T (2004) A twodomain structure of one subunit explains unique features of eukaryotic hydratase 2. J Biol Chem279: 24666-24672

DOI

32
Koski KM, Haapalainen AM, Hiltunen JK, Glumoff T (2005) Crystal structure of 2-enoyl-CoA hydratase 2 from human peroxisomal multifunctional enzyme type 2. J Mol Biol345: 1157-1169

DOI

33
Kostrewa D, Winkler FK, Folkers G, Scapozza L, Perozzo R (2005) The crystal structure of PfFabZ, the unique beta-hydroxyacyl-ACP dehydratase involved in fatty acid biosynthesis of Plasmodium falciparum. Protein Sci14: 1570-1580

DOI

34
Kremer L, Douglas JD, Baulard AR, Morehouse C, Guy MR, Alland D, Dover LG, Lakey JH, Jacobs WR Jr, Brennan PJ (2000) Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem275: 16857-16864

DOI

35
Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol372: 774-797

DOI

36
Labonte JW, Townsend CA (2013) Active site comparisons and catalytic mechanisms of the hot dog superfamily. Chem Rev113: 2182-2204

DOI

37
Leesong M, Henderson BS, Gillig JR, Schwab JM, Smith JL (1996) Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure4: 253-264

DOI

38
Leibundgut M, Jenni S, Frick C, Ban N (2007) Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science316: 288-290

DOI

39
Marrakchi H, Laneelle MA, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol21: 67-85

DOI

40
Matthews BW (1968) Solvent content of protein crystals. J Mol Biol33: 491-497

DOI

41
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr40: 658-674

DOI

42
Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE 3rd (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science280: 1607-1610

DOI

43
Moynie L, Leckie SM, McMahon SA, Duthie FG, Koehnke A, Taylor JW, Alphey MS, Brenk R, Smith AD, Naismith JH (2013) Structural insights into the mechanism and inhibition of the beta-hydroxydecanoyl-acyl carrier protein dehydratase from Pseudomonas aeruginosa. J Mol Biol425: 365-377

DOI

44
Nguyen C, Haushalter RW, Lee DJ, Markwick PR, Bruegger J, Caldara-Festin G, Finzel K, Jackson DR, Ishikawa F, O’Dowd B (2014) Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature505: 427-431

DOI

45
Nishida CR, Ortiz de Montellano PR (2011) Bioactivation of antituberculosis thioamide and thiourea prodrugs by bacterial and mammalian flavin monooxygenases. Chem Biol Interact192: 21-25

DOI

46
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Academic Press, New York, pp 307-326

DOI

47
Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr59: 1131-1137

DOI

48
Qian L, Ortiz de Montellano PR (2006) Oxidative activation of thiacetazone by the Mycobacterium tuberculosis flavin monooxygenase EtaA and human FMO1 and FMO3. Chem Res Toxicol19: 443-449

DOI

49
Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res42: W320-W324

DOI

50
Sacco E, Covarrubias AS, O’Hare HM, Carroll P, Eynard N, Jones TA, Parish T, Daffe M, Backbro K, Quemard A (2007) The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci USA104: 14628-14633

DOI

51
Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr58: 1772-1779

DOI

52
Schrodinger, LLC (2010). The PyMOL Molecular Graphics System, Version 1.3r1.

53
Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr66: 479-485

DOI

54
Swarnamukhi PL, Sharma SK, Bajaj P, Surolia N, Surolia A, Suguna K (2006) Crystal structure of dimeric FabZ of Plasmodium falciparum reveals conformational switching to active hexamers by peptide flips. FEBS Lett580: 2653-2660

DOI

55
Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev18: 81-101

DOI

56
Tasdemir D, Lack G, Brun R, Ruedi P, Scapozza L, Perozzo R (2006) Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem49: 3345-3353

DOI

57
Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS (2004) Enzymic activation and transfer of fatty acids as acyladenylates in mycobacteria. Nature428: 441-445

DOI

58
Wang L, Li J, Wang X, Liu W, Zhang XC, Li X, Rao Z (2013) Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c. Protein Cell4: 628-640

DOI

59
WHO (2014) Global tuberculosis report 2014 (Geneva, World Health Organization)

60
Wong HC, Liu G, Zhang YM, Rock CO, Zheng J (2002) The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J Biol Chem277: 15874-15880

DOI

61
Zhang L, Kong Y, Wu D, Zhang H, Wu J, Chen J, Ding J, Hu L, Jiang H, Shen X (2008a) Three flavonoids targeting the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Sci17: 1971-1978

DOI

62
Zhang L, Liu W, Hu T, Du L, Luo C, Chen K, Shen X, Jiang H (2008b) Structural basis for catalytic and inhibitory mechanisms of betahydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem283: 5370-5379

DOI

63
Zumla A, George A, Sharma V, Herbert N, Masham Baroness, Ilton BM (2013) WHO’s 2013 global report on tuberculosis: successes, threats, and opportunities. Lancet382: 1765-1767

DOI

Outlines

/