RESEARCH ARTICLE

Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein

  • Máté Virágh 1 ,
  • Annamária Marton 2 ,
  • Csaba Vizler 2 ,
  • Liliána Tóth 1 ,
  • Csaba Vágvölgyi 1 ,
  • Florentine Marx 3 ,
  • László Galgóczy , 1
Expand
  • 1. Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
  • 2. Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
  • 3. Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria

Received date: 03 Mar 2015

Accepted date: 10 Apr 2015

Published date: 27 Jul 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Small, cysteine-rich, highly stable antifungal proteins secreted by filamentous Ascomycetes have great potential for the development of novel antifungal strategies. However, their practical application is still limited due to their not fully clarified mode of action. The aim of this work was to provide a deep insight into the antifungal mechanism of Neosartorya fischeri antifungal protein (NFAP), a novel representative of this protein group. Within a short exposure time to NFAP, reduced cellular metabolism, apoptosis induction, changes in the actin distribution and chitin deposition at the hyphal tip were observed in NFAP-sensitive Aspergillus nidulans. NFAP did show neither a direct membrane disruptingeffect nor uptake by endocytosis. Investigation of A. nidulans signalling mutants revealed that NFAP activates the cAMP/protein kinase A pathway via G-protein signalling which leads to apoptosis and inhibition of polar growth. In contrast, NFAP does not have any influence on the cell wall integrity pathway, but an unknown cell wall integrity pathway-independent mitogen activated protein kinase A-activated target is assumed to be involved in the cell death induction. Taken together, it was concluded that NFAP shows similarities, but also differences in its mode of antifungal action compared to two most investigated NFAP-related proteins from Aspergillus giganteus and Penicillium chrysogenum.

Cite this article

Máté Virágh , Annamária Marton , Csaba Vizler , Liliána Tóth , Csaba Vágvölgyi , Florentine Marx , László Galgóczy . Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein[J]. Protein & Cell, 2015 , 6(7) : 518 -528 . DOI: 10.1007/s13238-015-0167-z

1
Bencina M, Legisa M, Read ND (2005) Cross-talk between cAMP and calcium signalling in Aspergillus niger. Mol Microbiol56: 268-281

DOI

2
Binder U, Oberparleiter C, Meyer V, Marx F (2010) The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol75: 294-307

DOI

3
Binder U, Bencina M, Eigentler A, Meyer V, Marx F (2011) The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol11: 209

DOI

4
Bussink HJ, Osmani SA (1999) A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus, Aspergillus nidulans. FEMS Microbiol Lett173: 117-125

DOI

5
Colabardini AC, De Castro PA, De Gouvêa PF, Savoldi M, Malavazi I, Goldman MH, Goldman GH (2010) Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. Mol Microbiol78: 1259-1279

DOI

6
Duncan VMS, O’Neil DA(2013) Commercialization of antifungal peptides. Fungal Biol. Rev. 26: 156-165

DOI

7
Fischer R, Timberlake WE(1995) Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J Cell Biol128: 485-498

DOI

8
Fujioka T, Mizutani O, Furukawa K, Sato N, Yoshimi A, Yamagata Y, Nakajima T, Abe K (2007) MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell6: 1497-1510

DOI

9
Galgóczy L, Kovács L, Karácsony Z, Virágh M, Hamari Zs, Vágvölgyi Cs (2013) Investigation of the antimicrobial effect of Neosartorya fischeri antifungal protein (NFAP) after heterologous expression in Aspergillus nidulans. Microbiol-SGM159: 411-419

DOI

10
Gorovits R, Yarden O (2003) Environmental suppression of Neurospora crassa cot-1 hyperbranching: a link between COT1 kinase and stress sensing. Eukaryot Cell2: 699-707

DOI

11
Guest GM, Lin X, Momany M (2004) Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol41: 13-22

DOI

12
Hagen S, Marx F, Ram AF, Meyer V (2007) The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol73: 2128-2134

DOI

13
Hegedüs N, Marx F (2013) Antifungal proteins: More than antimicrobials? Fungal Biol. Rev.26: 132-145

DOI

14
Hegedus N, Leiter E, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L (2011) The small molecular mass antifungal protein of Penicillium chrysogenum–a mechanism of action oriented review. J Basic Microbiol51: 561-571

DOI

15
Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter E, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol180: 204-210

DOI

16
Katayama T, Uchida H, Ohta A, Horiuchi H (2012) Involvement of protein kinase C in the suppression of apoptosis and in polarity establishment in Aspergillus nidulans under conditions of heat stress. PLoS One7: e50503

DOI

17
Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi Cs, Galgóczy L (2011) Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides32: 1724-1731

DOI

18
Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol61: 1147-1166

DOI

19
Leiter E, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother49: 2445-2453

DOI

20
Marx F, Binder U, Leiter E, Pócsi I (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci65: 445-454

DOI

21
Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol78: 17-28

DOI

22
Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett270: 1-11

DOI

23
Oberparleiter C, Kaiserer L, Haas H, Ladurner P, Andratsch M, Marx F (2003) Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive aspergilli. Antimicrob Agents Chemother47: 3598-3601

DOI

24
Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V (2011) Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem286: 13859-13868

DOI

25
Ronen R, Sharon H, Levdansky E, Romano J, Shadkchan Y, Osherov N (2007) The Aspergillus nidulans pkcA gene is involved in polarized growth, morphogenesis and maintenance of cell wall integrity. Curr Genet51: 321-329

DOI

26
Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol59: 753-764

DOI

27
Shimizu K, Keller NP (2001) Genetic involvement of a cAMPdependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics157: 591-600

28
Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell19: 1439-1449

DOI

29
Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother47: 588-593

DOI

30
Theis T, Marx F, Salvenmoser W, Stahl U, Meyer V (2005) New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Res Microbiol156: 47-56

DOI

31
Van Dijck P (2009) Nutrient sensing G protein-coupled receptors: interesting targets for antifungals? Med Mycol47: 671-680

DOI

32
Virágh M, Vörös D, Kele Z, Kovács L, Fizil Á, Lakatos G, Maróti G, Batta G, Vágvölgyi Cs, Galgóczy L (2014) Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr Purif94: 79-84

DOI

33
Yu JH, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J15: 5184-5190

Outlines

/