Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine
Received date: 03 Mar 2015
Accepted date: 11 May 2015
Published date: 11 Sep 2015
Copyright
Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
Key words: carrier; barrier; reactor; biomaterialassisted therapy; regenerative medicine
Chunxiao Qi , Xiaojun Yan , Chenyu Huang , Alexander Melerzanov , Yanan Du . Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine[J]. Protein & Cell, 2015 , 6(9) : 638 -653 . DOI: 10.1007/s13238-015-0179-8
1 |
Agata H
|
2 |
Antosiak-Iwanska M
|
3 |
Astradsson A, Aziz TZ (2015) Parkinson’s disease: fetal cell or stem cell-derived treatments. BMJ Clin Evid 2015: 431―439
|
4 |
Avci-Adali M
|
5 |
Ayvazyan A
|
6 |
Bader A
|
7 |
Badylak SF
|
8 |
Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13: 27―53
|
9 |
Balasundaram G, Webster TJ (2007) An overview of nano-polymers for orthopedic applications. Macromol Biosci 7(5): 635―642
|
10 |
Barczyk M, Schmidt M, Mattoli S (2015) Stem cell-based therapy in idiopathic pulmonary fibrosis. Stem Cell Rev 21: 1550―8943
|
11 |
Bashkin P
|
12 |
Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2(5): 305―313
|
13 |
Blumenthal B
|
14 |
Booth C
|
15 |
Borschel GH, Dennis RG, Kuzon WM Jr (2004) Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 113(2): 595―602
|
16 |
Borselli C
|
17 |
Brown KV
|
18 |
Butler CE
|
19 |
Calafiore R
|
20 |
Cao Y
|
21 |
Carpentier B, Gautier A, Legallais C (2009) Artificial and bioartificial liver devices: present and future. Gut 58(12): 1690―1702
|
22 |
Cartmell JS, Dunn MG (2000) Effect of chemical treatments on tendon cellularity and mechanical properties. J Biomed Mater Res 49(1): 134―140
|
23 |
Chamberlain LJ
|
24 |
Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26(7): 382―392
|
25 |
Chastain SR
|
26 |
Chen RN
|
27 |
Cheng TY
|
28 |
Cirone P
|
29 |
Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4): 415―436
|
30 |
Conklin BS
|
31 |
Cooper ML
|
32 |
Cortiella J
|
33 |
Currie LJ, Sharpe JR, Martin R (2001) The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast Reconstr Surg 108(6): 1713―1726
|
34 |
Dahl SL
|
35 |
Daly AB
|
36 |
David B
|
37 |
David B
|
38 |
de Graaff W
|
39 |
de Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8(8): 363―366
|
40 |
De Vos P
|
41 |
De Vos P
|
42 |
Desai TA
|
43 |
Desai TA, Hansford DJ, Ferrari M (2000) Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 17(1): 23―36
|
44 |
Dionne KE
|
45 |
Dufrane D, Gianello P (2012) Macro- or microencapsulation of pig islets to cure type 1 diabetes. World J Gastroenterol 18(47): 6885―6893
|
46 |
Efrat S (2008) Beta-cell replacement for insulin-dependent diabetes mellitus. Adv Drug Deliv Rev 60(2): 114―123
|
47 |
Egana JT
|
48 |
Elisseeff J
|
49 |
Elisseeff J
|
50 |
Fisher RA, Strom SC (2006) Human hepatocyte transplantation: worldwide results. Transplantation 82(4): 441―449
|
51 |
Fishman JM
|
52 |
Freytes DO
|
53 |
Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430): 1028―1032
|
54 |
Gilbert TW
|
55 |
Gille J
|
56 |
Grandoso L
|
57 |
Greenhalgh DG (2013) Treating a collagen scaffold with a low concentration of nicotine-promoted angiogenesis and wound healing. J Surg Res 185(2): 543―544
|
58 |
Hao S
|
59 |
He M, Callanan A (2013) Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng Part B Rev 19(3): 194―208
|
60 |
Hedberg EL
|
61 |
Hernandez RM
|
62 |
Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157(4): 657―663
|
63 |
Hofmann M
|
64 |
Hortelano G, Chang PL (2000) Gene therapy for hemophilia. Artif Cells Blood Substit Immobil Biotechnol 28(1): 1―24
|
65 |
Huang Q
|
66 |
Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5): 551―558
|
67 |
Hudson TW, Liu SY, Schmidt CE (2004) Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 10(9-10): 1346―1358
|
68 |
Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6): 733―742
|
69 |
Hwang NS
|
70 |
Iwata H
|
71 |
Jabbarzadeh E
|
72 |
Ji R
|
73 |
Kagami H, Agata H, Tojo A (2011) Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int J Biochem Cell Biol 43(3): 286―289
|
74 |
Kang A
|
75 |
Kasimir MT
|
76 |
Kearney CJ, Mooney DJ (2013) Macroscale delivery systems for molecular and cellular payloads. Nat Mater 12(11): 1004―1017
|
77 |
Khalil M
|
78 |
Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18(1): 2―9
|
79 |
Kim D
|
80 |
Kizilel S, Garfinkel M, Opara E (2005) The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 7(6): 968―985
|
81 |
Klees RF
|
82 |
Koffler J
|
83 |
Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58(4): 555―576
|
84 |
Kolambkar YM
|
85 |
Koshy ST
|
86 |
Krishnamurthy NV, Gimi B (2011) Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit Rev Biomed Eng 39(6): 473―491
|
87 |
Krol S
|
88 |
Kulig KM, Vacanti JP (2004) Hepatic tissue engineering. Transpl Immunol 12(3-4): 303―310
|
89 |
Kumar A
|
90 |
Kyriakides TR
|
91 |
Lacy PE
|
92 |
Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110): 920―926
|
93 |
Lee CH
|
94 |
Li S
|
95 |
Li Y
|
96 |
Liem PH
|
97 |
Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472): 908―910
|
98 |
Lin P
|
99 |
Liu Tsang V
|
100 |
Liu W
|
101 |
Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1): 47―55
|
102 |
Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272): 433―441
|
103 |
Lynch SE
|
104 |
Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4-5): 207―233
|
105 |
Marston WA
|
106 |
Martino MM, Hubbell JA (2010) The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factorbinding domain. FASEB J 24(12): 4711―4721
|
107 |
Martino MM
|
108 |
Matthews JA
|
109 |
McLaughlin CR
|
110 |
Meijer GJ
|
111 |
Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14): 413―437
|
112 |
Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3): 205―213
|
113 |
Mooney DJ
|
114 |
Nafea EH
|
115 |
Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14(2): 149―165
|
116 |
Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4(7): 371―380
|
117 |
Okamoto T
|
118 |
Omer A
|
119 |
Orive G
|
120 |
Orive G
|
121 |
O’Sullivan ES
|
122 |
Ott HC
|
123 |
Paredes Juarez GA
|
124 |
Park H
|
125 |
Paul A
|
126 |
Peng H
|
127 |
Pepper AR
|
128 |
Petersen TH
|
129 |
Peterson B
|
130 |
Pouch SM (2015) Infectious complications of pancreatic islet transplantation: clinical experience and unanswered questions. Curr Infect Dis Rep 17(5): 482
|
131 |
Prakash S, Chang TM(1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2(8): 883―887
|
132 |
Price AP
|
133 |
Rosario DJ
|
134 |
Sahni A, Odrljin T, Francis CW(1998) Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 273(13): 7554―7559
|
135 |
Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev 67-68: 35―73
|
136 |
Schechner JS
|
137 |
Schneider S
|
138 |
Sellitto P
|
139 |
Silva EA
|
140 |
Simmons CA
|
141 |
Street CN, Rajotte RV, Korbutt GS (2003) Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes. Curr Top Dev Biol 58: 111―136
|
142 |
Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115(Pt 19): 3729―3738
|
143 |
Sugiyama O
|
144 |
Ti D
|
145 |
Tomatsu S
|
146 |
Uchimura E
|
147 |
Uludag H, De Vos P, Tresco PA (2000a) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1-2): 29―64
|
148 |
Uludag H
|
149 |
Valentin JE
|
150 |
van der Windt DJ
|
151 |
Vermonden T
|
152 |
Wainwright JM
|
153 |
Wang T
|
154 |
Wang C, Varshney RR, Wang DA (2010) Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliv Rev 62(7-8): 699―710
|
155 |
Webber MJ
|
156 |
Weber LM
|
157 |
Weber LM, Cheung CY, Anseth KS (2008) Multifunctional pancreatic islet encapsulation barriers achieved via multilayer PEG hydrogels. Cell Transplant 16(10): 1049―1057
|
158 |
Wolf K
|
159 |
Wong H, Chang TM (1991) A novel two step procedure for immobilizing living cells in microcapsules for improving xenograft survival. Biomater Artif Cells Immobil Biotechnol 19(4): 687―697
|
160 |
Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26(35): 7339―7349
|
161 |
Wyman JL
|
162 |
Yamada Y
|
163 |
Yang HK, Yoon KH (2015) Current status of encapsulated islet transplantation. J Diabetes Complications 4(1): e13―e17
|
164 |
Yoo JJ
|
165 |
Zhang X
|
166 |
Zimmermann H, Shirley SG, Zimmermann U (2007) Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 7(4): 314―320
|
/
〈 | 〉 |