MINI-REVIEW

Recent progress in studies of factors that elicit pancreatic β-cell expansion

  • Qiu Li 1 ,
  • Zhi-Chun Lai , 1,2,3
Expand
  • 1. Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
  • 2. Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
  • 3. Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA

Received date: 17 Oct 2014

Accepted date: 13 Nov 2014

Published date: 05 Feb 2015

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The loss of or decreased functional pancreatic β-cell is a major cause of type 1 and type 2 diabetes. Previous studies have shown that adult β-cells can maintain their ability for a low level of turnover through replication and neogenesis. Thus, a strategy to prevent and treat diabetes would be to enhance the ability of β-cells to increase the mass of functional β-cells. Consequently, much effort has been devoted to identify factors that can effectively induce β-cell expansion. This review focuses on recent reports on small molecules and protein factors that have been shown to promote β-cell expansion.

Cite this article

Qiu Li , Zhi-Chun Lai . Recent progress in studies of factors that elicit pancreatic β-cell expansion[J]. Protein & Cell, 2015 , 6(2) : 81 -87 . DOI: 10.1007/s13238-014-0123-3

1
Adeghate E, Ponery AS (2002) GABA in the endocrine pancreas: Cellular localization and function in normal and diabetic rats. Tissue Cell34: 1-6

DOI

2
Aguayo-Mazzucato C, Zavacki AM, Marinelarena A, Hollister-Lock J, El Khattabi I, Marsili A, Weir GC, Sharma A, Larsen PR, Bonner-Weir S (2013) Thyroid hormone promotes postnatal rat pancreatic β -cell development and glucose-responsive insulin secretion through MAFA. Diabetes62: 1569-1580

DOI

3
Annes JP, Ryu JH, Lam K, Carolan PJ, Utz K, Hollister-Lock J, Arvanites AC, Rubin LL, Weir G, Melton DA (2012) Adenosine kinase inhibition selectively promotes rodent and porcine islet β - cell replication. Proc Natl Acad Sci USA109: 3915-3920

DOI

4
Ansarullah, Lu Y, Holstein M, DeRuyter B, Rabinovitch A, Guo Z (2013) Stimulating β -cell regeneration by combining a GPR119 agonist with a DPP-IV inhibitor. PLoS One8: e53345

DOI

5
Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocaña A (2014) Human β -cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes63: 819-831

DOI

6
Bock T, Pakkenberg B, Buschard K (2003) Increased islet volume but unchanged islet number in ob/ob mice. Diabetes52: 1716-1722

DOI

7
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α -dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature481: 463-468

DOI

8
Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, Rorsman P (2010) GABA is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes59: 1694-1701

DOI

9
Cavelti-Weder C, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, Bonner-Weir S, Weir GC (2013) Pancreatic duct ligation after almost complete β -cell loss: exocrine regeneration but no evidence of β -cell regeneration. Endocrinology154: 4493-4502

DOI

10
Centers for Disease Control and Prevention (2014) National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. U.S. Department of Health and Human Services, Atlanta

11
Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature429: 41 -46

DOI

12
Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, Wilce M, Schmidberger J, Rossjohn J, El-Kabbani O, Pike RN, Smith AI, Mackay IR, Rowley MJ, Whisstock JC (2007) GABA production by glutamic aciddecarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol14: 280-286

DOI

13
Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA105: 5266-5270

DOI

14
Furuya F, Shimura H, Asami K, Ichijo S, Takahashi K, Kaneshige M, Oikawa Y, Aida K, Endo T, Kobayashi T (2013) Ligand-bound thyroid hormone receptor contributes to reprogramming of pancreatic acinar cells into insulin-producing cells. J Biol Chem288: 16155-16166

DOI

15
Futamura M, Yao J, Li X, Bergeron R, Tran JL, Zycband E, Woods J, Zhu Y, Shao Q, Maruki-Uchida H, Goto-Shimazaki H, Langdon RB, Erion MD, Eiki J, Zhou YP (2012) Chronic treatment with a glucokinase activator delays the onset of hyperglycaemia and preserves beta cell mass in the Zucker diabetic fatty rat. Diabetologia55: 1071-1080

DOI

16
Gao J, Tian L, Weng G, Bhagroo NV, Sorenson RL, O’Brien TD, Luo J, Guo Z (2011) Stimulating beta cell replication and improving islet graft function by GPR119 agonists. Transpl Int24: 1124-1134

DOI

17
Guardado-Mendoza R, Jimenez-Ceja L, Majluf-Cruz A, Kamath S, Fiorentino TV, Casiraghi F, Velazquez AO, DeFronzo RA, Dick E, Davalli A, Folli F (2012) Impact of obesity severity and duration on pancreatic β -cell and α -cell dynamics in normoglycemic nonhuman primates. Int J Obes37: 1071 -1078

DOI

18
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M (2012) Differential regulation of embryonic and adult β cell replication. Cell Cycle11: 2431-2442

DOI

19
Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S, Cohen JC, Hobbs HH, Murphy AJ, Yancopoulos GD, Gromada J (2014) ANGPTL8/Betatrophin does not control pancreatic beta cell expansion. Cell159: 691-696

DOI

20
Hanley SC, Austin E, Assouline-Thomas B, Kapeluto J, Blaichman J, Moosavi M, Petropavlovskaia M, Rosenberg L (2010) Beta-cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology151: 1462-1472

DOI

21
Hartoft-Nielsen ML, Rasmussen AK, Bock T, Feldt-Rasmussen U, Kaas A, Buschard K (2009) Iodine and tri-iodo-thyronine reduce the incidence of type 1 diabetes mellitus in the autoimmune prone BB rats. Autoimmunity42: 131-138

DOI

22
Heit JJ, Karnik SK, Kim SK (2006) Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol22: 311 -338

DOI

23
Hull RL, Kodama K, Utzschneider KM, Carr DB, Prigeon RL, Kahn SE (2005) Dietary-fat-induced obesity in mice results in beta cell hyperplasia but not increased insulin release: evidence for specificity of impaired beta cell adaptation. Diabetologia48: 1350-1358

DOI

24
Jackerott M, Lee YC, Møllgård K, Kofod H, Jensen J, Rohleder S, Neubauer N, Gaarn LW, Lykke J, Dodge R, Dalgaard LT, Søstrup B, Jensen DB, Thim L, Nexø E, Thams P, Bisgaard HC, Nielsen JH (2006) Trefoil factors are expressed in human and rat endocrine pancreas: differential regulation by growth hormone. Endocrinology147: 5752-5759

DOI

25
Jörns A, Rath KJ, Terbish T, Arndt T, Meyer Zu, Vilsendorf A, Wedekind D, Hedrich HJ, Lenzen S (2010) Diabetes prevention by immunomodulatory FTY720 treatment in the LEW.1AR1-iddm rat despite immune cell activation. Endocrinology151: 3555-3565

DOI

26
Jörns A, Akin M, Arndt T, Terbish T, Zu Vilsendorf AM, Wedekind D, Hedrich HJ, Lenzen S (2014) Anti-TCR therapy combined with fingolimod for reversal of diabetic hyperglycemia by β cell regeneration in the LEW.1AR1-iddm rat model of type 1 diabetes. J Mol Med92: 743-755

27
Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraiwa T, Katakami N, Yamasaki Y, Matsuhisa M, Matsuoka TA (2008) PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocr J55: 235-252

DOI

28
Kaneto H, Matsuoka TA, Katakami N, Matsuhisa M (2009) Combination of MafA, PDX-1 and NeuroD is a useful tool to efficiently induce insulin-producing surrogate beta-cells. Curr Med Chem16: 3144-3151

DOI

29
Kim TK, Lee JS, Jung HS, Ha TK, Kim SM, Han N, Lee EJ, Kim TN, Kwon MJ, Lee SH, Kim MK, Rhee BD, Park JH (2014) Triiodothyronine induces proliferation of pancreatic β –cells through the MAPK/ERK pathway. Exp Clin Endocrinol Diabetes122: 240-245

DOI

30
Klöppel G, Löhr M, Habich K, Oberholzer M, Heitz PU (1985) Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res4: 110-125

31
Kulkarni RN, Mizrachi EB, Ocana AG, Stewart AF (2012) Human β - cell proliferation and intracellular signaling: driving in the dark without a road map. Diabetes61: 2205-2213

DOI

32
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, MauvaisJarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell130: 456-469

DOI

33
Lenzen S, Bailey CJ (1984) Thyroid hormones, gonadal and adrenocortical steroids and the function of the islets of Langerhans. Endocr Rev5: 411-434

DOI

34
Ligon B, Ligon B, Yang J, Morin SB, Ruberti MF, Steer ML (2007) Regulation of pancreatic islet cell survival and replication by gamma-aminobutyric acid. Diabetologia50: 764-773

DOI

35
López-Acosta JF, Moreno-Amador JL, Jiménez-Palomares M, DíazMarrero AR, Cueto M, Perdomo G, Cózar-Castellano I (2013) Epoxypukalide induces proliferation and protects against cytokine-mediated apoptosis in primary cultures of pancreatic β -cells. PLoS One8: e52862

DOI

36
Madsbad S, Laurberg P, Weeke J, Orskov H, Faber OK, Binder C, Krarup T, Regeur L (1981) Very early changes in circulating T3 and rT3 during development of metabolic derangement in diabetic patients. Acta Med Scand209: 385-387

DOI

37
Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC (2006) Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia49: 1838-1844

DOI

38
Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H, Hirata M (2013) Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PloS One8: e57375

DOI

39
Moon H, Chon J, Joo J, Kim D, In J, Lee H, Park J, Choi J (2013) FTY720 preserved islet β -cell mass by inhibiting apoptosis and increasing survival of β -cells in db/db mice. Diabetes Metab Res Rev29: 19-24

DOI

40
Nir T, Melton DA, Dor Y (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest117: 2553-2561

DOI

41
Oh YS, Lee YJ, Park K, Choi HH, Yoo S, Jun HS (2014) Treatment with glucokinase activator, YH-GKA, increases cell proliferation and decreases glucotoxic apoptosis in INS-1 cells. Eur J Pharm Sci51: 137-145

DOI

42
Orime K, Shirakawa J, Togashi Y, Tajima K, Inoue H, Ito Y, Sato K, Nakamura A, Aoki K, Goshima Y, Terauchi Y (2013) Trefoil factor 2 promotes cell proliferation in pancreatic β -cells through CXCR-4-mediated ERK1/2 phosphorylation. Endocrinology154: 54-64

DOI

43
Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab3: 167-175

DOI

44
Park K (2012) Identification of YH-GKA, a novel benzamideglucokinase activator as therapeutic candidate for type 2 diabetes mellitus. Arch Pharm Res35: 2029-2033

DOI

45
Peshavaria M, Larmie BL, Lausier J, Satish B, Habibovic A, Roskens V, Larock K, Everill B, Leahy JL, Jetton TL (2006) Regulation of pancreatic beta-cell regeneration in the normoglycemic 60 % partial-pancreatectomy mouse. Diabetes55: 3289-3298

DOI

46
Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab10(Suppl 4): 32-42

DOI

47
Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC (2013) β -Cell mass and turnover in humans: effects of obesity and aging. Diabetes Care36: e112

DOI

48
Salpeter SJ, Klein AM, Huangfu D, Grimsby J, Dor Y (2010) Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development137: 3205-3213

DOI

49
Samson MH, Vestergaard EM, Milman N, Poulsen SS, Nexo E (2008) Circulating serum trefoil factors increase dramatically during pregnancy. Scand J Clin Lab Invest68: 369-374

DOI

50
Samson MH, Poulsen SS, Obeid R, Herrmann W, Nexo E (2011) Trefoil factor family peptides in the human foetus and at birth. Eur J Clin Invest41: 785-792

DOI

51
Sanchis-Gomar F, Perez-Quilis C (2014) The p38-PGC-1 α -irisinbetatrophin axis: exploring new pathways in insulin resistance. Adipocyte3: 67-68

DOI

52
Sherry NA, Kushner JA, Glandt M, Kitamura T, Brillantes AM, Herold KC (2006) Effects of autoimmunity and immune therapy on betacell turnover in type 1 diabetes. Diabetes55: 3238-3245

DOI

53
Shirakawa J, Okuyama T, Yoshida E, Shimizu M, Horigome Y, Tuno T, Hayasaka M, Abe S, Fuse M, Togashi Y, Terauchi Y (2014) Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β –cell functions, and β -cell proliferation in male mice. Endocrinology155: 2102-2111

DOI

54
Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud’homme GJ, Wang Q (2011) GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci USA108: 11692-11697

DOI

55
Song M, Park HJ (2014) Anti-inflammatory effect of Phellinuslinteus grown on germinated brown rice on dextran sodium sulfateinduced acute colitis in mice and LPS-activated macrophages. J Ethnopharmacol154: 311 -318

DOI

56
Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res29: 301 -307

DOI

57
Stolovich-Rain M, Hija A, Grimsby J, Glaser B, Dor Y (2012) Pancreatic beta cells in very old mice retain capacity for compensatory proliferation. J Biol Chem287: 27407-27414

DOI

58
Tian J, Dang H, Chen Z, Guan A, Jin Y, Atkinson MA, Kaufman DL (2013) γ -Aminobutyric acid regulates both the survival and replication of human β -cells. Diabetes62: 3760-3765

DOI

59
Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CT (2014) Contribution of a non-β -cell source to β -cell mass during pregnancy. PLoS One9: e100398

DOI

60
Truong W, Emamaullee JA, Merani S, Anderson CC, James Shapiro AM (2007) Human islet function is not impaired by the sphingosine-1-phosphate receptor modulator FTY720. Am J Transpl7: 2031 -2038

DOI

61
Vetere A, Choudhary A, Burns SM, Wagner BK (2014) Targeting the pancreatic β -cell to treat diabetes. Nat Rev Drug Discov13: 278-289

DOI

62
Wang Y, Liu Y, Wang H, Li C, Qi P, Bao J (2012) Agaricusbisporuslectins mediates islet β -cell proliferation through regulation of cell cycle proteins. Exp Biol Med237: 287-296

DOI

63
Wei P, Shi M, Barnum S, Cho H, Carlson T, Fraser JD (2009) Effects of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 beta cells. Diabetologia52: 2142-2150

DOI

64
Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes β -cell proliferation during development and adulthood through Gprc6a. Diabetes63: 1021 -1031

DOI

65
Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK (2013a) No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest123: 2207-2217

DOI

66
Xiao X, Wiersch J, El-Gohary Y, Guo P, Prasadan K, Paredes J, Welsh C, Shiota C, Gittes GK (2013b) TGFβ receptor signaling is essential for inflammation-induced but not β -cell workloadinduced β -cell proliferation. Diabetes62: 1217-1226

DOI

67
Ximenes HM, Lortz S, Jörns A, Lenzen S (2007) Triiodothyronine (T3)-mediated toxicity and induction of apoptosis in insulinproducing INS-1 cells. Life Sci80: 2045-2050

DOI

68
Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G, 2010China noncommunicable disease surveillance group (2013) Prevalence and control of diabetes in Chinese adults. JAMA310: 948-959

DOI

69
Yi P, Park JS, Melton DA (2013) Betatrophin: a hormone that controls pancreatic β cell proliferation. Cell153: 747-758

DOI

70
Yi P, Park JS, Melton DA (2014) Perspectives on the activities of ANGPTL8/Betatrophin. Cell159: 467-468

DOI

71
Yu LG, Fernig DG, Smith JA, Milton JD, Rhodes JM (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res53: 4627-4632

72
Yu LG, Fernig DG, White MR, Spiller DG, Appleton P, Evans RC, Grierson I, Smith JA, Davies H, Gerasimenko OV, Petersen OH, Milton JD, Rhodes JM (1999) Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J Biol Chem274: 4890-4899

DOI

73
Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, Qi L, Zhang M, Wang X, Cui T, Yang LJ, Tang D (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes63: 514-525

DOI

74
Zhao Z, Choi J, Zhao C, Ma ZA (2012) FTY720 normalizes hyperglycemia by stimulating β -cell in vivo regeneration in db/ db mice through regulation of cyclin D3 and p57 (KIP2). J Biol Chem287: 5562-5573

DOI

Outlines

/