REVIEW

DNA replication components as regulators of epigenetic inheritance—lesson from fission yeast centromere

  • Haijin He 1 ,
  • Marlyn Gonzalez 1 ,
  • Fan Zhang 2 ,
  • Fei Li , 1
Expand
  • 1. Department of Biology, New York University, New York, NY 10003, USA
  • 2. Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China

Received date: 10 Feb 2014

Accepted date: 24 Feb 2014

Published date: 26 Jun 2014

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Genetic information stored in DNA is accurately copied and transferred to subsequent generations through DNA replication. This process is accomplished through the concerted actions of highly conserved DNA replication components. Epigenetic information stored in the form of histone modifications and DNA methylation, constitutes a second layer of regulatory information important for many cellular processes, such as gene expression regulation, chromatin organization, and genome stability. During DNA replication, epigenetic information must also be faithfully transmitted to subsequent generations. How this monumental task is achieved remains poorly understood. In this review, we will discuss recent advances on the role of DNA replication components in the inheritance of epigenetic marks, with a particular focus on epigenetic regulation in fission yeast. Based on these findings, we propose that specific DNA replication components function as key regulators in the replication of epigenetic information across the genome.

Cite this article

Haijin He , Marlyn Gonzalez , Fan Zhang , Fei Li . DNA replication components as regulators of epigenetic inheritance—lesson from fission yeast centromere[J]. Protein & Cell, 2014 , 5(6) : 411 -419 . DOI: 10.1007/s13238-014-0049-9

1
Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet9 (12): 923-937

DOI

2
Allshire RC, Nimmo ER (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev9(2): 218-233

DOI

3
Amor DJ, Kalitsis P (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol14(7): 359-368

DOI

4
Bannister AJ, Zegerman P (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410(6824): 120-124

DOI

5
Bayne EH, White SA (2010) Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell40(5): 666-677

DOI

6
Bell SP, Mitchell J (1995) The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell83(4): 563-568

DOI

7
Bernard P, Maure JF (2001) Requirement of heterochromatin for cohesion at centromeres. Science294(5551): 2539-2542

DOI

8
Bjerling P, Silverstein RA (2002) Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol22(7): 2170-2181

DOI

9
Black BE, Cleveland DW (2011) Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell144(4): 471-479

DOI

10
Bloom K, Yeh E (2010) Tension management in the kinetochore. Curr Biol20(23): R1040-R1048

DOI

11
Bui M, Dimitriadis EK (2012) Cell-cycle-dependent structural transitions in the human CENP-A nucleosome in vivo. Cell150(2): 317-326

DOI

12
Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem284(7): 4041-4045

DOI

13
Buscaino A, White SA (2012) Raf1 is a DCAF for the Rik1 DDB1-like protein and has separable roles in siRNA generation and chromatin modification. PLoS Genet8(2): e1002499

DOI

14
Buscaino A, Lejeune E (2013) Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance. EMBO J32(9): 1250-1264

DOI

15
Camahort R, Li B (2007) Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell26(6): 853-865

DOI

16
Carroll CW, Straight AF (2006) Centromere formation: from epigenetics to self-assembly. Trends Cell Biol16(2): 70-78

DOI

17
Chan SW, Zilberman D (2004) RNA silencing genes control de novo DNA methylation. Science303(5662): 1336

DOI

18
Chen ES, Saitoh S (2003) A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell11(1): 175-187

DOI

19
Chen ES, Zhang K (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature451(7179): 734-737

DOI

20
Chikashige Y, Kinoshita N (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell57(5): 739-751

DOI

21
Christensen TW, Tye BK (2003) Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol Biol Cell14(6): 2206-2215

DOI

22
Chuang LS, Ian HI (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science277(5334): 1996-2000

DOI

23
Cottarel G, Shero JH (1989) A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol9(8): 3342-3349

24
Couture JF, Trievel RC (2006) Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Curr Opin Struct Biol16(6): 753-760

DOI

25
Cowieson NP, Partridge JF (2000) Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol10(9): 517-525

DOI

26
Durso G, Nurse P (1997) Schizosaccharomyces pombe cdc20(+) encodes DNA polymerase epsilon and is required for chromosomal replication but not for the S phase checkpoint. Proc Natl Acad Sci USA94(23): 12491-12496

DOI

27
Dutta A, Bell SP (1997) Initiation of DNA replication in eukaryotic cells. Annu Rev Cell Dev Biol13: 293-332

DOI

28
Dziak R, Leishman D (2003) Evidence for a role of MCM (minichromosome maintenance) 5 in transcriptional repression of subtelomeric and Ty-proximal genes in Saccharomyces cerevisiae. J Biol Chem278(30): 27372-27381

DOI

29
Ehrenhofer-Murray AE, Kamakaka RT (1999) A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics153(3): 1171-1182

30
Fischer T, Cui B (2009) Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci USA106(22): 8998-9003

DOI

31
Fischle W, Wang Y (2003) Binary switches and modification cassettes in histone biology and beyond. Nature425(6957): 475-479

DOI

32
Foltz DR, Jansen LE (2009) Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell137(3): 472-484

DOI

33
Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast23(3): 173-183

DOI

34
Foss M, McNally FJ (1993) Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. Science262(5141): 1838-1844

DOI

35
Fox CA, Loo S (1995) The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev9(8): 911-924

DOI

36
Gonzalez M, He H (2013) Cell cycle-dependent deposition of CENP-A requires the Dos1/2-Cdc20 complex. Proc Natl Acad Sci USA110(2): 606-611

DOI

37
Guerin TM, Palladino F (2013) Transgenerational functions of small RNA pathways in controlling gene expression in C. elegans. Epigenetics9(1): 37-44

38
Hall IM, Noma K (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA100(1): 193-198

DOI

39
Hatfield MD, Reis AM (2006) Identification of MMS19 domains with distinct functions in NER and transcription. DNA Repair5(8): 914-924

DOI

40
Henderson DS, Banga SS (1994) Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J13 (6): 1450-1459

41
Henikoff S, Furuyama T (2010) Epigenetic inheritance of centromeres. Cold Spring Harb Symp Quant Biol75: 51-60

DOI

42
Hong EJ, Villen J (2005) A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol2(3): 106-111

DOI

43
Horn PJ, Bastie JN (2005) A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev19(14): 1705-1714

DOI

44
Huen MS, Sy SM (2008) Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem283(17): 11073-11077

DOI

45
Hyun Y, Yun H (2013) The catalytic subunit of Arabidopsis DNA polymerase alpha ensures stable maintenance of histone modification. Development140(1): 156-166

DOI

46
Irvine DV, Zaratiegui M (2006) Argonaute slicing is required for heterochromatic silencing and spreading. Science313(5790): 1134-1137

DOI

47
Ito S, Tan LJ (2010) MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell39(4): 632-640

DOI

48
Jansen LE, Black BE (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol176(6): 795-805

DOI

49
Jia S, Kobayashi R (2005) Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nat Cell Biol7(10): 1007-1013

DOI

50
Kagansky A, Folco HD (2009) Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science324(5935): 1716-1719

DOI

51
Kloc A, Zaratiegui M (2008) RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol18(7): 490-495

DOI

52
Kuscu C, Zaratiegui M (2014) CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. Proc Natl Acad Sci USA111(5): 1795-1800

DOI

53
Lee J, Zhou P (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell26(6): 775-780

DOI

54
Li H, Stillman B (2012) The origin recognition complex: a biochemical and structural view. Subcell Biochem62: 37-58

DOI

55
Li F, Goto DB (2005) Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol15(16): 1448-1457

DOI

56
Li F, Huarte M (2008) Lid2 Is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell135(2): 272-283

DOI

57
Li H, Motamedi MR (2009) An alpha motif at Tas3 C terminus mediates RITS cis spreading and promotes heterochromatic gene silencing. Mol Cell34(2): 155-167

DOI

58
Li F, Martienssen R (2011a) Coordination of DNA replication and histone modification by the Rik1-Dos2 complex. Nature475(7355): 244-248

DOI

59
Li PC, Chretien L (2011b) S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle10(2): 323-336

DOI

60
Liachko I, Tye BK (2005) Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae. Genetics171(2): 503-515

DOI

61
Liu J, Ren X (2010) Mutation in the catalytic subunit of DNA polymerase alpha influences transcriptional gene silencing and homologous recombination in Arabidopsis. Plant J61(1): 36-45

DOI

62
Luger K (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev13(2): 127-135

DOI

63
McIntosh JR, Grishchuk EL (2002) Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol18: 193-219

DOI

64
Min J, Zhang X (2002) Structure of the SET domain histone lysine methyltransferase Clr4. Nat Struct Biol9(11): 828-832

65
Morris CA, Moazed D (2007) Centromere assembly and propagation. Cell128(4): 647-650

DOI

66
Motamedi MR, Verdel A (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell119(6): 789-802

DOI

67
Nakayama J, Allshire RC (2001a) Role for DNA polymerase alpha in epigenetic control of transcriptional silencing in fission yeast. EMBO J20(11): 2857-2866

DOI

68
Nakayama J, Rice JC (2001b) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292(5514): 110-113

DOI

69
Natsume T, Tsutsui Y (2008) A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast. PLoS ONE3(5): 14

DOI

70
Nicolas E, Yamada T (2007) Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol14(5): 372-380

DOI

71
Pak DT, Pflumm M (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell91(3): 311-323

DOI

72
Pal-Bhadra M, Leibovitch BA (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science303(5658): 669-672

DOI

73
Palmer DK, O’Day K (1991) Purification of the centromerespecific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA88(9): 3734-3738

DOI

74
Papatriantafyllou M (2012) DNA metabolism: MMS19: CIA agent for DNA-linked affairs. Nat Rev Mol Cell Biol13(9): 538

DOI

75
Pluta AF, Mackay AM (1995) The centromere: hub of chromosomal activities. Science270(5242): 1591-1594

DOI

76
Poot RA, Bozhenok L (2004) The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol6(12): 1236-1244

DOI

77
Prasanth SG, Prasanth KV (2004) Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance.EMBO J23(13): 2651-2663

DOI

78
Prasanth SG, Shen Z (2010) Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization (34): 15093-15098

DOI

79
Probst AV, Dunleavy E (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol10(3): 192-206

DOI

80
Reyes-Turcu FE, Zhang K (2011) Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol18(10): 1132-1138

DOI

81
Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol13(3): 263-273

DOI

82
Schalch T, Job G (2011) The Chp1-Tas3 core is a multifunctional platform critical for gene silencing by RITS. Nat Struct Mol Biol18(12): 1351-1357

DOI

83
Schueler MG, Higgins AW (2001) Genomic and genetic definition of a functional human centromere. Science294(5540): 109-115

DOI

84
Schuh M, Lehner CF (2007) Incorporation of Drosophila CID/ CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol17(3): 237-243

DOI

85
Shankaranarayana GD, Motamedi MR (2003) Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr Biol13(14): 1240-1246

DOI

86
Shanker S, Job G (2010) Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genet6(10): e1001174

DOI

87
Shareef MM, King C (2001) Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell12(6): 1671-1685

DOI

88
Shivaraju M, Unruh JR (2012) Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast. Cell150(2): 304-316

DOI

89
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature403(6765): 41-45

DOI

90
Sugiyama T, Cam HP (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell128(3): 491-504

DOI

91
Sun X, Le HD (2003) Sequence analysis of a functional Drosophila centromere. Genome Res13(2): 182-194

DOI

92
Taverna SD, Li H (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol14(11): 1025-1040

DOI

93
Thon G, Hansen KR (2005) The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics171 (4): 1583-1595

DOI

94
Verdel A, Jia S (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science303(5658): 672-676

DOI

95
Volpe TA, Kidner C (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297(5588): 1833-1837

DOI

96
Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem67: 721-751

DOI

97
Weaver BA, Cleveland DW (2007) Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res67(21): 10103-10105

DOI

98
Wood V, Gwilliam R (2002) The genome sequence of Schizosaccharomyces pombe. Nature415(6874): 871-880

DOI

99
Wu XY, Li H (2001) The human homologue of the yeast DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of estrogen receptor. J Biol Chem276(26): 23962-23968

DOI

100
Yin H, Zhang X (2009) Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase mutation in Arabidopsis. Plant Cell21(2): 386-402

DOI

101
Zaratiegui M, Castel SE (2011) RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature479(7371): 135-138

DOI

102
Zhang Z, Shibahara K (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature408(6809): 221-225

DOI

103
Zhang K, Mosch K (2008) Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol15(4): 381-388

DOI

104
Zhu B, Reinberg D (2011) Epigenetic inheritance: uncontested? Cell es21(3): 435-441

Outlines

/