A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2
Zijing Jia, Kang Wang, Minxiang Xie, Jiajing Wu, Yaling Hu, Yunjiao Zhou, Ayijiang Yisimayi, Wangjun Fu, Lei Wang, Pan Liu, Kaiyue Fan, Ruihong Chen, Lin Wang, Jing Li, Yao Wang, Xiaoqin Ge, Qianqian Zhang, Jianbo Wu, Nan Wang, Wei Wu, Yidan Gao, Jingyun Miao, Yinan Jiang, Lili Qin, Ling Zhu, Weijin Huang, Yanjun Zhang, Huan Zhang, Baisheng Li, Qiang Gao, Xiaoliang Sunney Xie, Youchun Wang, Yunlong Cao, Qiao Wang, Xiangxi Wang
A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2
[1] |
Barnes CO, Jette CA, Abernathy ME et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020a;588:682–687.
CrossRef
Google scholar
|
[2] |
Cao Y, Yisimayi A, Jian F et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022b;608:593–602.
CrossRef
Google scholar
|
[3] |
Chalkias S, Harper C, Vrbicky K et al. A Bivalent Omicron-Containing Booster Vaccine against Covid-19. N Engl J Med 2022;387:1279–1291.
CrossRef
Google scholar
|
[4] |
Fedry J, Hurdiss DL, Wang CY et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci Adv 2021;7:eabf5632.
CrossRef
Google scholar
|
[5] |
Gao Q, Bao L, Mao H et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020;369:77–81.
CrossRef
Google scholar
|
[6] |
Hacisuleyman E, Hale C, Saito Y et al. Vaccine breakthrough infections with SARS-CoV-2 variants. N Engl J Med 2021;384:2212–2218.
CrossRef
Google scholar
|
[7] |
Lv Z, Deng YQ, Ye Q et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 2020;369:1505–1509.
CrossRef
Google scholar
|
[8] |
Muecksch F, Wang Z, Cho A et al. Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature 2022;607:128–134.
CrossRef
Google scholar
|
[9] |
Walls AC, Park YJ, Tortorici MA et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281–292.e6 e286.
CrossRef
Google scholar
|
[10] |
Wang Z, Muecksch F, Schaefer-Babajew D et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 2021f;595:426–431.
CrossRef
Google scholar
|
[11] |
Wang Z, Schmidt F, Weisblum Y et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021g;592:616–622.
|
[12] |
Wang Q, Guo Y, Zhang RM et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. Lancet Infect Dis 2023;23:e397–e398.
CrossRef
Google scholar
|
[13] |
Widge AT, Rouphael NG, Jackson LA et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med 2021;384:80–82.
CrossRef
Google scholar
|
[14] |
Zhao W, Zhao H, Huang B et al. Unravelling the enhanced vaccine immunity by heterologous KCONVAC/Ad5-nCoV COVID-19 vaccination. Signal Transduct Target Ther 2022;7:210.
CrossRef
Google scholar
|
[15] |
Zhou Y, Liu Z, Li S et al. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep 2021;34:108699.
CrossRef
Google scholar
|
/
〈 | 〉 |