Aging-induced YTHDF aggregates impair mitochondrial function by trapping mitochondrial RNAs and suppressing their expression in the brain

Juan Zhang, Dingfeng Li, Keqiang He, Qiang Liu, Zhongwen Xie

PDF(22146 KB)
PDF(22146 KB)
Protein Cell ›› 2024, Vol. 15 ›› Issue (2) : 149-155. DOI: 10.1093/procel/pwad041
LETTER

Aging-induced YTHDF aggregates impair mitochondrial function by trapping mitochondrial RNAs and suppressing their expression in the brain

Author information +
History +

Cite this article

Download citation ▾
Juan Zhang, Dingfeng Li, Keqiang He, Qiang Liu, Zhongwen Xie. Aging-induced YTHDF aggregates impair mitochondrial function by trapping mitochondrial RNAs and suppressing their expression in the brain. Protein Cell, 2024, 15(2): 149‒155 https://doi.org/10.1093/procel/pwad041

References

[1]
Chen L, Gao Y, Xu S et al. N6-methyladenosine reader YTHDF family in biological processes: structures, roles, and mechanisms. Front Immunol 2023;14:1162607.
CrossRef Google scholar
[2]
Faitg J, Lacefield C, Davey T et al. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep 2021;36:109509.
CrossRef Google scholar
[3]
Gao Y, Pei G, Li D et al. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res 2019;29:767–769.
CrossRef Google scholar
[4]
Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 2017;143:418–431.
CrossRef Google scholar
[5]
Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol Syst Biol 2020;16:e9596.
CrossRef Google scholar
[6]
Lee A, Hirabayashi Y, Kwon SK et al. Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Curr Opin Physiol 2018;3:82–93.
CrossRef Google scholar
[7]
Pellegrini L, Scorrano L. A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ 2007;14:1275–1284.
CrossRef Google scholar
[8]
Rezaei-Ghaleh N, Amininasab M, Kumar S et al. Phosphorylation modifies the molecular stability of beta-amyloid deposits. Nat Commun 2016;7:11359.
CrossRef Google scholar
[9]
Ries RJ, Zaccara S, Klein P et al. m(6)A enhances the phase separation potential of mRNA. Nature 2019;571:424–428.
CrossRef Google scholar
[10]
Shi H, Zhang X, Weng YL et al. m(6)A facilitates hippocampus- dependent learning and memory through YTHDF1. Nature 2018;563:249–253.
CrossRef Google scholar
[11]
Wang X, Lu Z, Gomez A et al. N6-methyladenosinedependent regulation of messenger RNA stability. Nature 2014;505:117–120.
CrossRef Google scholar
[12]
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010;11:872–884.
CrossRef Google scholar
[13]
Youmans KL, Leung S, Zhang J et al. Amyloid-beta42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations. J Neurosci Methods 2011;196:51–59.
CrossRef Google scholar
[14]
Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 2020;181:1582–1595.e18 e1518.
CrossRef Google scholar
[15]
Zhao BS, Wang X, Beadell AV et al. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 2017;542:475–478.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(22146 KB)

Accesses

Citations

Detail

Sections
Recommended

/