A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes

Shanshan Yang , Chengyu Liu , Mengmeng Jiang , Xiaoqian Liu , Lingling Geng , Yiyuan Zhang , Shuhui Sun , Kang Wang , Jian Yin , Shuai Ma , Si Wang , Juan Carlos Izpisua Belmonte , Weiqi Zhang , Jing Qu , Guang-Hui Liu

Protein Cell ›› 2024, Vol. 15 ›› Issue (2) : 98 -120.

PDF (31096KB)
Protein Cell ›› 2024, Vol. 15 ›› Issue (2) : 98 -120. DOI: 10.1093/procel/pwad039
RESEARCH ARTICLE

A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes

Author information +
History +
PDF (31096KB)

Abstract

Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell–cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.

Keywords

single-nucleus RNA sequencing / liver / hepatocytes / aging / senescence / SREBP2

Cite this article

Download citation ▾
Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell, 2024, 15(2): 98-120 DOI:10.1093/procel/pwad039

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams JM, Jafar-Nejad H. The roles of notch signaling in liver development and disease. Biomolecules 2019;9:608.

[2]

Aging Atlas C. Aging Atlas. a multi-omics database for aging biology. Nucleic acids research 2021;49:D825–d830.

[3]

Ahmadieh H, Azar ST. Liver disease and diabetes: association, pathophysiology, and management. Diabetes Res Clin Pract 2014;104:53–62.

[4]

Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14, 1083-1086.

[5]

Aizarani N, Saviano A, Sagar et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019;572:199–204.

[6]

Angelidis, I., Simon, L.M., Fernandez, I.E., Strunz, M., Mayr, C.H., Greiffo, F.R., Tsitsiridis, G., Ansari, M., Graf, E., Strom, T.M., et al. (2019). An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 10, 963.

[7]

Annunziato S, Tchorz JS. Liver zonation—a journey through space and time. Nat Metab 2021;3:7–8.

[8]

Aravinthan A, Scarpini C, Tachtatzis P et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 2013;58:549–556.

[9]

Bakken TE, Hodge RD, Miller JA et al. Single-nucleus and single- cell transcriptomes compared in matched cortical cell types. PLoS One 2018;13:e0209648.

[10]

Banales JM, Huebert RC, Karlsen T et al. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019;16:269–281.

[11]

Barreby, E, Chen Aouadi, M. Macrophage functional diversity in NAFLD—more than inflammation. Nat Rev Endocrinol 2022;18:461–472.

[12]

Basyte-Bacevice V, Skieceviciene J, Valantiene I et al. SERPINA1 and HSD17B13 gene variants in patients with liver fibrosis and cirrhosis. J Gastrointestin Liver Dis 2019;28:297–302.

[13]

Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol 2019;16:395–410.

[14]

Ben-Moshe S, Veg T, Manco R et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 2022;29:973989.e10.

[15]

Bird TG, Müller M, Boulter L et al. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med 2018;10:1.

[16]

Braeuning A, Ittrich C, Köhle C et al. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J 2006;273:5051–5061.

[17]

Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect 1999;1:1349–1365.

[18]

Buonomo EL, Mei S, Guinn SR et al. Liver stromal cells restrict macrophage maturation and stromal IL-6 limits the differentiation of cirrhosis-linked macrophages. J Hepatol 2022;76:1127–1137.

[19]

Byles V, Cormerais Y, Kalafut K et al. Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin. Mol Metab 2021;53:ARTN101309.

[20]

Cai Y, Song W, Li J et al. The landscape of aging. Sci China Life Sci 2022;65:2354–2454.

[21]

Campana L, Esser H, Huch M et al. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021;22:608–624.

[22]

Campisi J, di Fagagna FD. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007;8:729–740.

[23]

Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas 1960;20(1);37–46.

[24]

Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol 2016;594:2061–2073.

[25]

Danek L, Nocoń H, Tarnawska A et al. Species differences in hepatic microsomal drug-metabolizing enzymes. Pol J Pharmacol Pharm 1988;40:351–356.

[26]

Deng L, Ren R, Liu Z et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 2019;10:3329.

[27]

Dixon LJ, Barnes M, Tang H et al. Kupffer cells in the liver. Compr Physiol 2013;3:785–797.

[28]

Donne R, Sangouard F, Celton-Morizur S et al. Hepatocyte polyploidy: driver or gatekeeper of chronic liver diseases. Cancers (Basel) 2021;13:1.

[29]

Dorotea D, Koya D, Ha H. Recent insights Into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways. Front Pharmacol 2020;11:265.

[30]

Driskill JH, Pan D. The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol 2021;16:299–322.

[31]

Eberlé D, Hegarty B, Bossard P et al. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004;86:839–848.

[32]

Efremova, M., Vento-Tormo, M., Teichmann, S.A., and Vento-Tormo, R. (2020). CellPhoneDB: inferring cell-cell communication from combined expression of multi- subunit ligand-receptor complexes. Nat Protoc 15, 1484–1506.

[33]

Elhanati S, Kanfi Y, Varvak A et al. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 2013;4:905–912.

[34]

Evangelou K, Gorgoulis VG. Sudan Black B, the specific histochemical stain for lipofuscin: a novel method to detect senescent cells. Methods Mol Biol (Clifton, N.J.) 2017;1534:111–119.

[35]

Fabregat I, Moreno-Càceres J, Sánchez A et al. IT-LIVER Consortium. TGF-β signalling and liver disease. FEBS J 2016;283:2219–2232.

[36]

Fang X, Jiang M, Zhou M et al. Elucidating the developmental dynamics of mouse stromal cells at single-cell level. Life Med 2022;1:45–48.

[37]

Fleming SJ, Chaffin MD, Chaffin MD et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. BioRxiv 791699 [Preprint]. July 12, 2022. Available from:

[38]

Gadd VL, Aleksieva N, Forbes SJ. Epithelial plasticity during liver injury and regeneration. Cell Stem Cell 2020;27:557–573.

[39]

Gao L, Zhang Z, Zhang P et al. Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci 2018;14:1636–1644.

[40]

Georgakopoulou EA, Tsimaratou K, Evangelou K et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013;5:37–50.

[41]

Gorabi AM, Abbasifard M, Imani D et al. Effect of curcumin on C-reactive protein as a biomarker of systemic inflammation: an updated meta-analysis of randomized controlled trials. Phytother Res 2022;36:85–97.

[42]

Guo YR, Xu J, Du Q et al. IRF2 regulates cellular survival and Lenvatinib-sensitivity of hepatocellular carcinoma (HCC) through regulating beta-catenin. Transl Oncol 2021;14:101059.

[43]

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529.

[44]

He S, Sharpless NE. Senescence in health and disease. Cell 2017;169:1000–1011.

[45]

He J, Cui H, Shi X et al. Functional hepatobiliary organoids recapitulate liver development and reveal essential drivers of hepatobiliary cell fate determination. Life Med 2022;1:345–358.

[46]

He X, Memczak S, Qu J et al. Single-cell omics in ageing: a young and growing field. Nat Metab 2020;2:293–302.

[47]

He L, Pu W, Liu X et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 2021;371:1.

[48]

Hillmer EJ, Zhang H, Li HS et al. STAT3 signaling in immunity. Cytokine Growth Factor Rev 2016;31:1–15.

[49]

Ho DW, Tsui YM, Chan LK et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021;12:3684.

[50]

Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Investig 2002;109:1125–1131.

[51]

Huang D, Zuo Y, Zhang C et al. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 2022;1.

[52]

Huda N, Liu G, Hong HH et al. Hepatic senescence, the good and the bad. World J Gastroenterol 2019;25:5069–5081.

[53]

Hundertmark J, Berger H, Tacke F. Single cell RNA sequencing in NASH. Methods Mol Biol (Clifton, N.J.) 2022;2455:181–202.

[54]

Hunt NJ, Kang SWS, Lockwood GP et al. Hallmarks of aging in the liver. Comput Struct Biotechnol J 2019;17:1151–1161.

[55]

Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: deciphering communication from the liver. Mol Metab 2021;44:101138.

[56]

Karsdal MA, Nielsen SH, Leeming DJ et al. The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv Drug Deliv Rev 2017;121:43–56.

[57]

Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 2017;11:622–630.

[58]

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357-360.

[59]

Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol 2018;10:1.

[60]

Kohsari M, Moradinazar M, Rahimi Z et al. Liver enzymes and their association with some cardiometabolic diseases: evidence from a Large Kurdish Cohort. Biomed Res Int 2021;2021:5584452.

[61]

Krenkel O, Hundertmark J, Ritz TP et al. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 2019;8:503.

[62]

Krishnaswami SR, Grindberg RV, Novotny M et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 2016;11:499–524.

[63]

Krizhanovsky V, Yon M, Dickins RA et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008;134:657–667.

[64]

Kruepunga N, Hakvoort TBM, Hikspoors J et al. Anatomy of rodent and human livers: what are the differences? Biochim Biophys Acta Mol Basis Dis 2019;1865:869–878.

[65]

Le Couteur DG, Cogger VC, McCuskey RS et al. Age-related changes in the liver sinusoidal endothelium: a mechanism for dyslipidemia. Ann N Y Acad Sci 2007;1114:79–87.

[66]

Lee W, Ahn JH, Park HH et al. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Target Ther 2020;5:ARTN 186.

[67]

Lehallier B, Gate D, Schaum N et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 2019;25:1843–1850.

[68]

Lei J, Wang S, Kang W et al. FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein Cell 2021;12:145–151.

[69]

Leng SX, Pawelec G. Single-cell immune atlas for human aging and frailty. Life Med 2022;1:67–70.

[70]

Liu X, Liu Z, Wu Z et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023;186:287–304.e26.

[71]

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

[72]

Ma S, Sun S, Geng L et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 2020;180:984–1001.e22.

[73]

Ma S, Sun S, Li J et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 2021;31:415–432.

[74]

Ma S, Wang S, Ye Y et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 2022;29:990–1005.e10.

[75]

Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018;68:550–562.

[76]

MacParland SA, Liu JC, Ma XZ et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018;9:4383.

[77]

Maeso-Díaz R, Gracia-Sancho J. Aging and chronic liver disease. Semin Liver Dis 2020;40:373–384.

[78]

Mann DA. Epigenetics in liver disease. Hepatology 2014;60:1418–1425.

[79]

Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2006;2:875–894.

[80]

Maslov AY, Ganapathi S, Westerhof M et al. DNA damage in normally and prematurely aged mice. Aging Cell 2013;12:467–477.

[81]

Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature 2005;438:612–621.

[82]

McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337 e324.

[83]

Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology 2017;65:1384–1392.

[84]

O’Hara SP, La Russo NF. Cellular senescence, neuropeptides and hepatic fibrosis: additional insights into increasing complexity. Hepatology 2017;66:318–320.

[85]

Ogrodnik M, Miwa S, Tchkonia T et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017;8:15691.

[86]

Omenetti A, Choi S, Michelotti G et al. Hedgehog signaling in the liver. J Hepatol 2011;54:366–373.

[87]

Paris J, Henderson NC. Liver zonation, revisited. Hepatology 2022;76:1219–1230.

[88]

Piñero J, Saüch J, Sanz F, and Furlong LI. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Computational and structural biotechnology journal 2021;19:2960–2967.

[89]

Poisson J, Lemoinne S, Boulanger C et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 2017;66:212–227.

[90]

Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 2018;14:479–492.

[91]

Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol 2013;3:1473–1492.

[92]

Ramachandran P, Dobie R, Wilson-Kanamori JR et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019;575:512–518.

[93]

Ramachandran P, Matchett KP, Dobie R et al. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol 2020;17:457–472.

[94]

Ren X, Hu B, Song M et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep 2019;26:3643–3656.e7.

[95]

Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021;13:1611–1628.

[96]

Rohn F, Kordes C, Castoldi M et al. Laminin-521 promotes quiescence in isolated stellate cells from rat liver. Biomaterials 2018;180:36–51.

[97]

Russell JO, Camargo FD. Hippo signalling in the liver: role in development, regeneration and disease. Nat Rev Gastroenterol Hepatol 2022;19:297–312.

[98]

Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014;24:42–57.

[99]

Sastre J, Serviddio G, Pereda J et al. Mitochondrial function in liver disease. Front Biosci 2007;12:1200–1209.

[100]

Saviano A, Henderson NC, Baumert TF. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol 2020;73:1219–1230.

[101]

Schleicher J, Tokarski C, Marbach E et al. Zonation of hepatic fatty acid metabolism—the diversity of its regulation and the benefit of modeling. Biochim Biophys Acta 2015;1851:641–656.

[102]

Schmucker DL. Age-related changes in liver structure and function: implications for disease? Exp Gerontol 2005;40:650–659.

[103]

Šeda O, Šedová L, Včelák J et al. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res 2017;66:S357–S365.

[104]

Semmler G, Balcar L, Oberkofler H et al. PNPLA3 and SERPINA1 variants are associated with severity of fatty liver disease at first referral to a tertiary center. J Pers Med 2021;11:ARTN 165.

[105]

Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab 2012;16:414–419.

[106]

Shen W, Wan X, Hou J et al. Peroxisome proliferator-activated receptor γ coactivator 1α maintains NAD+ bioavailability protecting against steatohepatitis. Life Med 2022;1:207–220.

[107]

Shimano, H. (2009). SREBPs: physiology and pathophysiology of the SREBP family. FEBS J 276, 616-621.

[108]

Silva IS, Ghiraldini FG, Veronezi GMB et al. Polyploidy and nuclear phenotype characteristics of cardiomyocytes from diabetic adult and normoglycemic aged mice. Acta Histochem 2018;120:84–94.

[109]

Skinnider MA, Squair JW, Kathe C et al. Cell type prioritization in single-cell data. Nat Biotechnol 2021;39:30–34.

[110]

Soyal, S.M., Nofziger, C., Dossena, S., Paulmichl, M., and Patsch, W. (2015). Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 36, 406-416.

[111]

Stahl EC, Haschak MJ, Popovic B et al. Macrophages in the aging liver and age-related liver disease. Front Immunol 2018;9:2795.

[112]

Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet 2019;20:631–656.

[113]

Stefan N, Häring HU. The role of hepatokines in metabolism. Nat Rev Endocrinol 2013;9:144–152.

[114]

Sun J, Li Y, Yang X et al. Growth differentiation factor 11 accelerates liver senescence through the inhibition of autophagy. Aging Cell 2022;21:ARTN e13532.

[115]

Sun Y, Li Q, Kirkland JL. Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. Life Med 2022;1:103–119.

[116]

Torre C, Perret C, Colnot S. Molecular determinants of liver zonation. Prog Mol Biol Transl Sci 2010;97:127–150.

[117]

van der Meer D, Gurholt TP, Sønderby IE et al. The link between liver fat and cardiometabolic diseases is highlighted by genome-wide association study of MRI-derived measures of body composition. Commun Biol 2022;5:1271.

[118]

Van Rooyen DM, Farrell GC. SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol 2011;26:789–792.

[119]

Villeneuve JP, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab 2004;5:273–282.

[120]

Vons C, Beaudoin S, Helmy N et al. First description of the surgical anatomy of the cynomolgus monkey liver. Am J Primatol 2009;71:400–408.

[121]

Wang S, Hu M, Qian Y et al. CHI3L1 in the pathophysiology and diagnosis of liver diseases. Biomed Pharmacother 2020a;131:110680.

[122]

Wang S, Zheng Y, Li J et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020b;180:585–600.e19.

[123]

Wang W, Zheng Y, Sun S et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med 2021a;13:1.

[124]

Wang ZY, Keogh A, Waldt A et al. Single-cell and bulk transcriptomics of the liver reveals potential targets of NASH with fibrosis. Sci Rep 2021b;11:19396.

[125]

Warren A, Cogger VC, Fraser R et al. The effects of old age on hepatic stellate cells. Curr Gerontol Geriatr Res 2011;2011:439835.

[126]

Wu Z, Shi Y, Lu M et al. METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res 2020;48:11083–11096.

[127]

Xiang CG, Du YY, Meng GF et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019;364:399.

[128]

Xiao M, Chen W, Wang C et al. Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget 2018;9:8772–8784.

[129]

Zhou T, Kiran M, Lui KO et al. Decoding liver fibrogenesis with single-cell technologies. Life Med 2022;1:333–344.

[130]

Zhang H, Li J, Ren J et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021;12:695–716.

[131]

Zhang W, Zhang S, Yan P et al. A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 2020;11:2202.

[132]

Zhao J, Qi YF, Yu YR. STAT3: a key regulator in liver fibrosis. Ann Hepatol 2021;21:100224.

[133]

Zhou L, Yu M, Arshad M et al. Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARalpha pathway in adipocytes. Diabetes 2018;67:1935–1948.

[134]

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10, 1523.

[135]

Zou X, Dai X, Alexios-Fotios AM et al. From monkey single-cell atlases into a broader biomedical perspective. Life Med 2022;1:254–257.

[136]

Zou Z, Long X, Zhao Q et al. A single-cell transcriptomic atlas of human skin aging. Dev Cell 2021;56:383–397.e8.

RIGHTS & PERMISSIONS

The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (31096KB)

Supplementary files

PAC-0098-23125-LGH_suppl_1

PAC-0098-23125-LGH_suppl_2

488

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/