CRISPR-assisted transcription activation by phase-separation proteins

Jiaqi Liu, Yuxi Chen, Baoting Nong, Xiao Luo, Kaixin Cui, Zhan Li, Pengfei Zhang, Wenqiong Tan, Yue Yang, Wenbin Ma, Puping Liang, Zhou Songyang

PDF(4394 KB)
PDF(4394 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (12) : 874-887. DOI: 10.1093/procel/pwad013
RESEARCH ARTICLE

CRISPR-assisted transcription activation by phase-separation proteins

Author information +
History +

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been widely used for genome engineering and transcriptional regulation in many different organisms. Current CRISPR-activation (CRISPRa) platforms often require multiple components because of inefficient transcriptional activation. Here, we fused different phase-separation proteins to dCas9-VPR (dCas9-VP64-P65-RTA) and observed robust increases in transcriptional activation efficiency. Notably, human NUP98 (nucleoporin 98) and FUS (fused in sarcoma) IDR domains were best at enhancing dCas9-VPR activity, with dCas9-VPR-FUS IDR (VPRF) outperforming the other CRISPRa systems tested in this study in both activation efficiency and system simplicity. dCas9-VPRF overcomes the target strand bias and widens gRNA designing windows without affecting the off-target effect of dCas9-VPR. These findings demonstrate the feasibility of using phase-separation proteins to assist in the regulation of gene expression and support the broad appeal of the dCas9-VPRF system in basic and clinical applications.

Keywords

CRISPR / transcriptional activation / phase-separation proteins

Cite this article

Download citation ▾
Jiaqi Liu, Yuxi Chen, Baoting Nong, Xiao Luo, Kaixin Cui, Zhan Li, Pengfei Zhang, Wenqiong Tan, Yue Yang, Wenbin Ma, Puping Liang, Zhou Songyang. CRISPR-assisted transcription activation by phase-separation proteins. Protein Cell, 2023, 14(12): 874‒887 https://doi.org/10.1093/procel/pwad013

References

[1]
Adikusuma F, Piltz S, Corbett MA et al. Large deletions induced by Cas9 cleavage. Nature 2018;560:E8–E9.
CrossRef Google scholar
[2]
Ahn JH, Davis ES, Daugird TA et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 2021;595:591–595.
CrossRef Google scholar
[3]
Altae-Tran H, Kannan S, Demircioglu FE et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 2021;374:57–65.
CrossRef Google scholar
[4]
Baeumler TA, Ahmed AA, Fulga TA. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep 2017;20:2639–2653.
CrossRef Google scholar
[5]
Bai XT, Gu BW, Yin T et al. Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats. Cancer Res 2006;66:4584–4590.
CrossRef Google scholar
[6]
Banani SF, Lee HO, Hyman AA et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 2017;18:285–298.
CrossRef Google scholar
[7]
Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci 2022;79:130.
CrossRef Google scholar
[8]
Biamonti G, Vourc’h C. Nuclear stress bodies. Cold Spring Harb Perspect Biol 2010;2:a000695.
CrossRef Google scholar
[9]
Boija A, Klein IA, Sabari BR et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 2018;175:1842–1855.e16.
CrossRef Google scholar
[10]
Boisvert FM, van Koningsbruggen S, Navascués J et al. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007;8:574–585.
CrossRef Google scholar
[11]
Borrow J, Shearman AM., Stanton VP Jr et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996;12:159–167.
CrossRef Google scholar
[12]
Box JK, Paquet N, Adams MN et al. Nucleophosmin: from structure and function to disease development. BMC Mol Biol 2016;17:19.
CrossRef Google scholar
[13]
Brangwynne CP, Mitchison TJ, Hyman AA. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 2011;108:4334–4339.
CrossRef Google scholar
[14]
Brezgin S, Kostyusheva A, Kostyushev D et al. Dead Cas systems: types, principles, and applications. Int J Mol Sci 2019;20:6041.
CrossRef Google scholar
[15]
Capelson M, Liang Y, Schulte R et al. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 2010;140:372–383.
CrossRef Google scholar
[16]
Carter GC, Hsiung C-H, Simpson L et al. N-terminal domain of TDP43 enhances liquid-liquid phase separation of globular proteins. J Mol Biol 2021;433:166948.
CrossRef Google scholar
[17]
Chandra B, Michmerhuizen NL, Shirnekhi HK et al. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. Cancer Discov 2022;12:1152–1169.
CrossRef Google scholar
[18]
Charlesworth CT, Deshpande PS, Dever DP et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019;25:249–254.
CrossRef Google scholar
[19]
Chavez A, Scheiman J, Vora S et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods 2015;12:326–328.
CrossRef Google scholar
[20]
Chen B, Gilbert LA, Cimini BA et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013;155:1479–1491.
CrossRef Google scholar
[21]
Chen S, Zhou Y, Chen Y et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34:i884–i890.
CrossRef Google scholar
[22]
Chen Y, Liu J, Zhi S et al. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Nat Commun 2020;11:3136.
CrossRef Google scholar
[23]
Cho WK, Spille JH, Hecht M et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 2018;361:412–415.
CrossRef Google scholar
[24]
Chong S, Dugast-Darzacq C, Liu Z et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 2018;361:eaar2555.
CrossRef Google scholar
[25]
Crozat A, Aman P, Mandahl N et al. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993;363:640–644.
CrossRef Google scholar
[26]
Cullot G, Boutin J, Toutain J et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 2019;10:1136.
CrossRef Google scholar
[27]
Dominguez AA, Chavez MG, Urke A et al. CRISPR-mediated synergistic epigenetic and transcriptional control. Crispr J 2022;5: 264–275.
CrossRef Google scholar
[28]
Duronio RJ, Marzluff WF. Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body. RNA Biol 2017;14:726–738.
CrossRef Google scholar
[29]
Falini B, Nicoletti I, Bolli N et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 2007;92:519–532.
CrossRef Google scholar
[30]
Fang X, Wang L, Ishikawa R et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 2019;569:265–269.
CrossRef Google scholar
[31]
Feric M, Vaidya N, Harmon TS et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 2016;165:1686–1697.
CrossRef Google scholar
[32]
Gaudelli NM, Komor AC, Rees HA et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 2017;551:464–471.
CrossRef Google scholar
[33]
Gilbert LA, Larson MH, Morsut L et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013;154:442–451.
CrossRef Google scholar
[34]
Gilbert LA, Horlbeck MA, Adamson B et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014;159:647–661.
CrossRef Google scholar
[35]
Gough SM, Slape CI, Aplan PD. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 2011;118:6247–6257.
CrossRef Google scholar
[36]
Guo Y, Zhao S, Wang GG. Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’, and phase separation-based compaction. Trends Genet 2021;37: 547–565.
CrossRef Google scholar
[37]
Heman-Ackah SM, Bassett AR, Wood MJ. Precision modulation of neurodegenerative disease-related gene expression in human iPSC-derived neurons. Sci Rep 2016;6:28420.
CrossRef Google scholar
[38]
Hendel A, Bak RO, Clark JT et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 2015;33:985–989.
CrossRef Google scholar
[39]
Hille F, Richter H, Wong SP et al. The biology of CRISPR-Cas: backward and forward. Cell 2018;172:1239–1259.
CrossRef Google scholar
[40]
Hilton IB, D’Ippolito AM, Vockley CM et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015;33:510–517.
CrossRef Google scholar
[41]
Ibáñez de Opakua A, Geraets JA, Frieg B et al. Molecular interactions of FG nucleoporin repeats at high resolution. Nat Chem 2022;14:1278–1285.
CrossRef Google scholar
[42]
Jia W, Yao Z, Zhao J et al. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci 2017;186:1–10.
CrossRef Google scholar
[43]
Kalverda B, Pickersgill H, Shloma VV et al. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 2010;140:360–371.
CrossRef Google scholar
[44]
Kapitonov VV, Makarova KS, Koonin EV. ISC, a novel group of bacterial and archaeal DNA transposons that encode Cas9 homologs. J Bacteriol 2015;198:797–807.
CrossRef Google scholar
[45]
Kielkopf CL. Insights from structures of cancer-relevant pre-mRNA splicing factors. Curr Opin Genet Dev 2018;48:57–66.
CrossRef Google scholar
[46]
Kipniss NH, Dingal P, Abbott TR et al. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat Commun 2017;8:2212.
CrossRef Google scholar
[47]
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science 2018;361:866–869.
CrossRef Google scholar
[48]
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016;44:3989–4004.
CrossRef Google scholar
[49]
Koblan LW, Arbab M, Shen MW et al. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat Biotechnol 2021;39:1414–1425.
CrossRef Google scholar
[50]
Komor AC, Kim YB, Packer MS et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016;533:420–424.
CrossRef Google scholar
[51]
Konermann S, Brigham MD, Trevino AE et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015;517:583–588.
CrossRef Google scholar
[52]
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017;37:67–78.
CrossRef Google scholar
[53]
Larson AG, Elnatan D, Keenen MM et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 2017;547:236–240.
CrossRef Google scholar
[54]
Liao HK, Hatanaka F, Araoka T et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 2017;171:1495–1507.e15.
CrossRef Google scholar
[55]
Lin DH, Hoelz A. The structure of the nuclear pore complex (an update). Annu Rev Biochem 2019;88:725–783.
CrossRef Google scholar
[56]
Lindsay ME, Plafker K, Smith AE et al. Npap60/Nup50 Is a Tri-stable switch that stimulates importin-α:β-mediated nuclear protein import. Cell 2002;110:349–360.
CrossRef Google scholar
[57]
Liu XS, Wu H, Ji X et al. Editing DNA methylation in the mammalian genome. Cell 2016;167:233–247.e17.
CrossRef Google scholar
[58]
Liu XS, Wu H, Krzisch M et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 Gene. Cell 2018;172:979–992.e6.
CrossRef Google scholar
[59]
Lyu XY, Deng Y, Huang XY et al. CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification. Cell Res 2022;32:969–981.
CrossRef Google scholar
[60]
Machyna M, Neugebauer KM, Staněk D. Coilin: the first 25 years. RNA Biol 2015;12:590–596.
CrossRef Google scholar
[61]
Maeder ML, Linder SJ, Cascio VM et al. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013;10:977–979.
CrossRef Google scholar
[62]
Makarova KS, Wolf YI, Iranzo J et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020;18:67–83.
CrossRef Google scholar
[63]
Makis AC, Chaliasos N, Hatzimichael EC et al. Recombinant human erythropoietin therapy in a transfusion-dependent beta-thalassemia major patient. Ann Hematol 2001;80:492–495.
CrossRef Google scholar
[64]
Mao D, Jia Y, Peng P et al. Enhanced efficiency of flySAM by optimization of sgRNA parameters in Drosophila. G3 Genes Genomes Genetics 2020;10:4483–4488.
CrossRef Google scholar
[65]
Martella A, Firth M, Taylor BJM et al. Systematic evaluation of CRISPRa and CRISPRi modalities enables development of a multiplexed, orthogonal gene activation and repression system. ACS Synth Biol 2019;8:1998–2006.
CrossRef Google scholar
[66]
Matharu N, Rattanasopha S, Tamura S et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 2019;363:eaau0629.
CrossRef Google scholar
[67]
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020;136:2275–2289.
CrossRef Google scholar
[68]
Mitrea DM, Cika JA, Guy CS et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. Elife 2016;5:e13571.
CrossRef Google scholar
[69]
Moore MS. Npap60: a new player in nuclear protein import. Trends Cell Biol 2003;13:61–64.
CrossRef Google scholar
[70]
Murakami T, Qamar S, Lin JQ et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 2015;88:678–690.
CrossRef Google scholar
[71]
Nakamura T, Largaespada DA, Lee MP et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996;12:154–158.
CrossRef Google scholar
[72]
Niemelä E, Desai D, Lundsten E et al. Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol-loaded nanoparticles. Cell Stress Chaperones 2019;24:735–748.
CrossRef Google scholar
[73]
Nizami Z, Deryusheva S, Gall JG. The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2010;2:a000653.
CrossRef Google scholar
[74]
Owen I, Yee D, Wyne H et al. The oncogenic transcription factor FUSCHOP can undergo nuclear liquid-liquid phase separation. J Cell Sci 2021;134:jcs258578.
CrossRef Google scholar
[75]
Pan C, Wu X, Markel K et al. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. Nat Plants 2021;7:942–953.
CrossRef Google scholar
[76]
Passon DM, Lee M, Rackham O et al. Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci USA 2012;109:4846–4850.
CrossRef Google scholar
[77]
Patel A, Lee HO, Jawerth L et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 2015;162:1066–1077.
CrossRef Google scholar
[78]
Patro R, Duggal G, Love MI et al. Salmon provides fast and biasaware quantification of transcript expression. Nat Methods 2017;14:417–419.
CrossRef Google scholar
[79]
Perez-Pinera P, Kocak DD, Vockley CM et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013;10:973–976.
CrossRef Google scholar
[80]
Qi LS, Larson MH, Gilbert LA et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013;152:1173–1183.
CrossRef Google scholar
[81]
Rabbitts TH, Forster A, Larson R et al. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet 1993;4:175–180.
CrossRef Google scholar
[82]
Raczynska KD, Ruepp MD, Brzek A et al. FUS/TLS contributes to replication-dependent histone gene expression by interaction with U7 snRNPs and histone-specific transcription factors. Nucleic Acids Res 2015;43:9711–9728.
CrossRef Google scholar
[83]
Riedmayr LM, Hinrichsmeyer KS, Karguth N et al. dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nat Protoc 2022;17:781–818.
CrossRef Google scholar
[84]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–140.
CrossRef Google scholar
[85]
Ryan JJ, Sprunger ML, Holthaus K et al. Engineered protein disaggregases mitigate toxicity of aberrant prion-like fusion proteins underlying sarcoma. J Biol Chem 2019;294:11286–11296.
CrossRef Google scholar
[86]
Sabari BR, Dall’Agnese A, Boija A et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018;361:eaar3958.
CrossRef Google scholar
[87]
Savell KE, Bach SV, Zipperly ME et al. A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation. eNeuro 2019;6.
CrossRef Google scholar
[88]
Schmidt HB, Görlich D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear porelike permselectivity. Elife 2015;4:e04251.
CrossRef Google scholar
[89]
Schuler G, Hu C, Ke A. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science 2022;376:1476–1481.
CrossRef Google scholar
[90]
Schwartz JC, Cech TR, Parker RR. Biochemical properties and biological functions of FET proteins. Annu Rev Biochem 2015;84:355–379.
CrossRef Google scholar
[91]
Shin Y, Berry J, Pannucci N et al. Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 2017;168:159–171.e14.
CrossRef Google scholar
[92]
Singh RN, Howell MD, Ottesen EW et al. Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech 2017;1860:299–315.
CrossRef Google scholar
[93]
Smith J, Calidas D, Schmidt H et al. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3. Elife 2016;5:e21337.
CrossRef Google scholar
[94]
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 2015;4:1521.
CrossRef Google scholar
[95]
Spannl S, Tereshchenko M, Mastromarco GJ et al. Biomolecular condensates in neurodegeneration and cancer. Traffic 2019;20:890–911.
CrossRef Google scholar
[96]
Takagi M, Sueishi M, Saiwaki T et al. A novel nucleolar protein, NIFK, interacts with the forkhead associated domain of Ki-67 antigen in mitosis. J Biol Chem 2001;276:25386–25391.
CrossRef Google scholar
[97]
Tanenbaum ME, Gilbert LA, Qi LS et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014;159:635–646.
CrossRef Google scholar
[98]
Tatomer DC, Terzo E, Curry KP et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016;213:557–570.
CrossRef Google scholar
[99]
Terlecki-Zaniewicz S, Humer T, Eder T et al. Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression. Nat Struct Mol Biol 2021;28:190–201.
CrossRef Google scholar
[100]
Trapnell C, Cacchiarelli D, Grimsby J et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014;32:381–386.
CrossRef Google scholar
[101]
Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 2016;17:300–312.
CrossRef Google scholar
[102]
Tsankov AM, Gu H, Akopian V et al. Transcription factor binding dynamics during human ES cell differentiation. Nature 2015;518:344–349.
CrossRef Google scholar
[103]
Uddin F, Rudin CM, Sen T. CRISPR gene therapy: applications, limitations, and implications for the future. Front Oncol 2020;10:1387.
CrossRef Google scholar
[104]
Wagner DL, Amini L, Wendering DJ et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med 2019;25:242–248.
CrossRef Google scholar
[105]
Wilsker D, Probst L, Wain HM et al. Nomenclature of the ARID family of DNA-binding proteins. Genomics 2005;86: 242–251.
CrossRef Google scholar
[106]
Wu, Z, Yang, H, Colosi, P. Effect of genome size on AAV vector packaging. Mol Ther 2010;18:80–86.
CrossRef Google scholar
[107]
Xu W, Pei G, Liu H et al. Compartmentalization-aided interaction screening reveals extensive high-order complexes within the SARS-CoV-2 proteome. Cell Rep 2021a;36:109482.
CrossRef Google scholar
[108]
Xu X, Chemparathy A, Zeng L et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell 2021b;81:4333–4345.e4.
CrossRef Google scholar
[109]
Yang L, Gal J, Chen J et al. Self-assembled FUS binds active chromatin and regulates gene transcription. Proc Natl Acad Sci USA 2014;111:17809–17814.
CrossRef Google scholar
[110]
Zhong S, Salomoni P, Pandolfi PP. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2000;2:E85–E90.
CrossRef Google scholar
[111]
Zhou H, Liu J, Zhou C et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci 2018;21:440–446.
CrossRef Google scholar
[112]
Zhou M, Li W, Li J et al. Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug screening in test tubes. J Biol Chem 2020;295:11420–11434.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(4394 KB)

Accesses

Citations

Detail

Sections
Recommended

/