ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover

Maomao Pu , Wenhui Zheng , Hongtao Zhang , Wei Wan , Chao Peng , Xuebo Chen , Xinchang Liu , Zizhen Xu , Tianhua Zhou , Qiming Sun , Dante Neculai , Wei Liu

Protein Cell ›› 2023, Vol. 14 ›› Issue (9) : 653 -667.

PDF (4635KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (9) : 653 -667. DOI: 10.1093/procel/pwac063
RESEARCH ARTICLE
RESEARCH ARTICLE

ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover

Author information +
History +
PDF (4635KB)

Abstract

Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.

Keywords

ORP8 / lipophagy / lipid / autophagy

Cite this article

Download citation ▾
Maomao Pu, Wenhui Zheng, Hongtao Zhang, Wei Wan, Chao Peng, Xuebo Chen, Xinchang Liu, Zizhen Xu, Tianhua Zhou, Qiming Sun, Dante Neculai, Wei Liu. ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein Cell, 2023, 14(9): 653-667 DOI:10.1093/procel/pwac063

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrends C, Sowa ME, Gygi SP et al. Network organization of the human autophagy system. Nature 2010;466:68–76.

[2]

Chino H, Hatta T, Natsume T et al. Intrinsically disordered protein TEX264 mediates ER-phagy. Mol Cell 2019;74:909–921.e6.

[3]

Chung J, Torta F, Masai K et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 2015;349:428–432.

[4]

Ding Y, Zhang S, Yang L et al. Isolating lipid droplets from multiple species. Nat Protoc 2013;8:43–51.

[5]

Du X, Zhou L, Aw YC et al. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J Cell Biol 2020;219:e201905162.

[6]

Egan DF, Shackelford DB, Mihaylova MM et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011;331:456–461.

[7]

Fumagalli F, Noack J, Bergmann TJ et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 2016;18:1173–1184.

[8]

Gao W, Kang JH, Liao Y et al. Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 2010;285:1371–1383.

[9]

Garcia-Macia M, Santos-Ledo A, Leslie J et al. An mTORC1-Plin3 pathway is essential to activate lipophagy and protects against hepatosteatosis. Hepatology 2021;74:3441–3459.

[10]

Gump JM, Staskiewicz L, Morgan MJ et al. Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol 2014;16:47–54.

[11]

Guyard V, Monteiro-Cardoso VF, Omrane M et al. ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER-mitochondria contact sites. J Cell Biol 2022;221:e202112107.

[12]

Hung CM, Lombardo PS, Malik N et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci Adv 2021;7:eabg4544.

[13]

Jacomin AC, Samavedam S, Promponas V et al. iLIR database: a web resource for LIR motif-containing proteins in eukaryotes. Autophagy 2016;12:1945–1953.

[14]

Jordan SD et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 2011;13:434–446.

[15]

Jordan TX, Randall G. Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J Virol 2017;91:e02020–e02016.

[16]

Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 2015;17:759–770.

[17]

Kaushik S, Rodriguez-Navarro JA, Arias E et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 2011;14:173–183.

[18]

Khaminets A, Heinrich T, Mari M et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015;522:354–358.

[19]

Lazarou M, Sliter DA, Kane LA et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015;524:309–314.

[20]

Levine B, Kroemer G. Biological functions of autophagy genes: a disease Perspective. Cell 2019;176:11–42.

[21]

Li YH, Luo J, Mosley YC et al. AMP-activated protein kinase directly phosphorylates and destabilizes Hedgehog pathway transcription factor GLI1 in medulloblastoma. Cell Rep 2015;12:599–609.

[22]

Li ZP, Schulze RJ, Weller SG et al. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci Adv 2016;2:e1601470.

[23]

Lin YC, Chang P-F, Lin H-F et al. Variants in the autophagy-related gene IRGM confer susceptibility to non-alcoholic fatty liver disease by modulating lipophagy. J Hepatol 2016;65:1209–1216.

[24]

Liu L, Feng D, Chen G et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012;14:177–185.

[25]

Martinez-Lopez N, Garcia-Macia M, Sahu S et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 2016;23: 113–127.

[26]

Mauthe M, Orhon I, Rocchi C et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018;14:1435–1455.

[27]

Mizushima N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol 2020;63:1–10.

[28]

Naito Y, Asada N, Nguyen MD et al. AMP-activated protein kinase regulates cytoplasmic dynein behavior and contributes to neuronal migration in the developing neocortex. Development 2020;147:dev187310.

[29]

Novak I, Kirkin V, McEwan DG et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010;11:45–51.

[30]

O’Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013;15:668–676.

[31]

Olarte MJ, Kim S, Sharp ME et al. Determinants of endoplasmic reticulum- to-lipid droplet protein targeting. Dev Cell 2020;54:471–487.e7.

[32]

Olkkonen VM, Li S. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res 2013;52:529–538.

[33]

Ouimet M, Franklin V, Mak E et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 2011;13:655–667.

[34]

Pinkosky SL, Scott JW, Desjardins EM et al. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK beta1 isoforms. Nat Metab 2020;2:873–881.

[35]

Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015;32:678–692.

[36]

Robichaud S, Fairman G, Vijithakumar V et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 2021;17:3671–3689.

[37]

Schroeder B, Schulze RJ, Weller SG et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015;61:1896–1907.

[38]

Settembre C, De Cegli R, Mansueto G et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013;15:647–658.

[39]

Singh R, Kaushik S, Wang Y et al. Autophagy regulates lipid metabolism. Nature 2009;458:1131–1135.

[40]

Szymczak AL, Workman CJ, Wang Y et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 2004;22:589–594.

[41]

Tanaka S, Hikita H, Tatsumi T et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 2016;64:1994–2014.

[42]

Vernia S, Solaz-Fuster MC, Gimeno-Alcañiz JV et al. AMP-activated protein kinase phosphorylates R5/PTG, the glycogen targeting subunit of the R5/PTG-protein phosphatase 1 holoenzyme, and accelerates its down-regulation by the laforin-malin complex. J Biol Chem 2009;284:8247–8255.

[43]

Wang HJ, Becuwe M, Housden BE et al. Seipin is required for converting nascent to mature lipid droplets. eLife 2016;5:e16582.

[44]

Wei Y, Chiang WC, Sumpter R Jr. et al. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 2017;168:224–238.e10.

[45]

Wyant GA, Abu-Remaileh M, Frenkel EM et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 2018;360:751–758.

[46]

Xu Y, Propson NE, Du S et al. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc Natl Acad Sci USA 2021;118:e2023418118.

[47]

Yang L, Li P, Fu S et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010;11:467–478.

[48]

Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017;18:671–684.

[49]

Zehmer JK, Bartz R, Liu P et al. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci 2008;121:1852–1860.

[50]

Zhang C, Liu P. The new face of the lipid droplet: lipid droplet proteins. Proteomics 2019;19:e1700223.

[51]

Zhang T, Liu J, Shen S et al. SIRT3 promotes lipophagy and chaperon-mediated autophagy to protect hepatocytes against lipotoxicity. Cell Death Differ 2020;27:329–344.

[52]

Zhou T, Li S, Zhong W et al. OSBP-related protein 8 (ORP8) regulates plasma and liver tissue lipid levels and interacts with the nucleoporin Nup62. PLoS One 2011;6:e21078.

[53]

Zhou Y, Robciuc MR, Wabitsch M et al. OSBP-related proteins (ORPs) in human adipose depots and cultured adipocytes: evidence for impacts on the adipocyte phenotype. PLoS One 2012;7:e45352.

[54]

Zubiete-Franco I, García-Rodríguez JL, Martínez-Uña M et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J Hepatol 2016;64:409–418.

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (4635KB)

Supplementary files

PAC-0653-22465-LW_suppl_1

PAC-0653-22465-LW_suppl_2

PAC-0653-22465-LW_suppl_3

620

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/