An engineered xCas12i with high activity, high specificity, and broad PAM range

Hainan Zhang, Xiangfeng Kong, Mingxing Xue, Jing Hu, Zikang Wang, Yinghui Wei, Haoqiang Wang, Jingxing Zhou, Weihong Zhang, Mengqiu Xu, Xiaowen Shen, Fengcai Yin, Zhiyuan Ai, Guangyan Huang, Junhui Xia, Xueqiong Song, Hengbin Li, Yuan Yuan, Jinhui Li, Na Zhong, Meiling Zhang, Yingsi Zhou, Hui Yang

PDF(487 KB)
PDF(487 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (7) : 538-543. DOI: 10.1093/procel/pwac052
LETTER
LETTER

An engineered xCas12i with high activity, high specificity, and broad PAM range

Author information +
History +

Cite this article

Download citation ▾
Hainan Zhang, Xiangfeng Kong, Mingxing Xue, Jing Hu, Zikang Wang, Yinghui Wei, Haoqiang Wang, Jingxing Zhou, Weihong Zhang, Mengqiu Xu, Xiaowen Shen, Fengcai Yin, Zhiyuan Ai, Guangyan Huang, Junhui Xia, Xueqiong Song, Hengbin Li, Yuan Yuan, Jinhui Li, Na Zhong, Meiling Zhang, Yingsi Zhou, Hui Yang. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell, 2023, 14(7): 538‒543 https://doi.org/10.1093/procel/pwac052

References

[1]
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824–844.
CrossRef Google scholar
[2]
Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014;30:1473–1475.
CrossRef Google scholar
[3]
Bock C, Datlinger P, Chardon F et al. High-content CRISPR screening. Nat Rev Methods Primers 2022;2:9.
CrossRef Google scholar
[4]
Bravo JPK, Liu M-S, Hibshman GN et al. Structural basis for mismatch surveillance by CRISPR-Cas9. Nature 2022;603:343–347.
CrossRef Google scholar
[5]
Chen Y, Hu Y, Wang X et al. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation (Camb) 2022;3:100264.
CrossRef Google scholar
[6]
Doudna JA. The promise and challenge of therapeutic genome editing. Nature 2020;578:229–236.
CrossRef Google scholar
[7]
Gillmore JD, Gane E, Taubel J et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021;385: 493–502.
CrossRef Google scholar
[8]
Kleinstiver BP, Sousa AA, Walton RT et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 2019;37:276–282.
CrossRef Google scholar
[9]
McGaw C, Garrity AJ, Munoz GZ et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat Commun 2022;13:2833.
CrossRef Google scholar
[10]
Richter MF, Zhao KT, Eton E et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol 2020;38:883–891.
CrossRef Google scholar
[11]
Yan WX, Hunnewell P, Alfonse LE et al. Functionally diverse type V CRISPR-Cas systems. Science 2019;363:88–91.
CrossRef Google scholar
[12]
Yin J, Liu M, Liu Y et al. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov 2019;5:18.
CrossRef Google scholar
[13]
Wang X, Ding C, Yu W et al. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep 2020;31:107723.
CrossRef Google scholar
[14]
Zetsche B, Gootenberg JS, Abudayyeh OO et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759–771.
CrossRef Google scholar
[15]
Zhang, Zuris JA, Viswanathan R et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat Commun 2021;12:3908.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(487 KB)

Accesses

Citations

Detail

Sections
Recommended

/