Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor
Yinghui Wei , Meiling Zhang , Jing Hu , Yingsi Zhou , Mingxing Xue , Jianhang Yin , Yuanhua Liu , Hu Feng , Ling Zhou , Zhifang Li , Dongshuang Wang , Zhiguo Zhang , Yin Zhou , Hongbin Liu , Ning Yao , Erwei Zuo , Jiazhi Hu , Yanzhi Du , Wen Li , Chunlong Xu , Hui Yang
Protein Cell ›› 2023, Vol. 14 ›› Issue (6) : 416 -432.
Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor
Approximately 140 million people worldwide are homozygous carriers of APOE4 (ϵ4), a strong genetic risk factor for late onset familial and sporadic Alzheimer’s disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ϵ4 allele copies were converted to the AD-neutral ϵ3 allele in human ϵ4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.
human embryo / APOE4 / disease-preventive mutations / base editor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
Supplementary files
/
| 〈 |
|
〉 |