Cryo-EM structure of human κ-opioid receptor-Gi complex bound to an endogenous agonist dynorphin A

Yuxiang Chen, Bo Chen, Tingting Wu, Fangfang Zhou, Fei Xu

PDF(8923 KB)
PDF(8923 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (6) : 464-468. DOI: 10.1093/procel/pwac033
LETTER
LETTER

Cryo-EM structure of human κ-opioid receptor-Gi complex bound to an endogenous agonist dynorphin A

Author information +
History +

Cite this article

Download citation ▾
Yuxiang Chen, Bo Chen, Tingting Wu, Fangfang Zhou, Fei Xu. Cryo-EM structure of human κ-opioid receptor-Gi complex bound to an endogenous agonist dynorphin A. Protein Cell, 2023, 14(6): 464‒468 https://doi.org/10.1093/procel/pwac033

References

[1]
Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 2010;1314:44–55.
CrossRef Google scholar
[2]
Chavkin C. The therapeutic potential of kappa-opioids for treatment of pain and addiction. Neuropsychopharmacology 2011;36:369–370.
CrossRef Google scholar
[3]
Chavkin C, Goldstein A. Specific receptor for the opioid peptide dynorphin: structure—activity relationships. Proc Natl Acad Sci USA 1981;78:6543–6547.
CrossRef Google scholar
[4]
Che T, Majumdar S, Zaidi SA, et al. Structure of the nanobody- stabilized active state of the kappa opioid receptor. Cell 2018;172:55–67.
CrossRef Google scholar
[5]
Claff T, Yu J, Blais V, et al. Elucidating the active delta-opioid receptor crystal structure with peptide and small-molecule agonists. Sci Adv 2019;5:eaax9115.
CrossRef Google scholar
[6]
Faouzi A, Varga BR, Majumdar S. Biased opioid ligands. Molecules 2020;25:4257.
CrossRef Google scholar
[7]
Ferre G, Czaplicki G, Demange P, et al. Structure and dynamics of dynorphin peptide and its receptor. Vitam Horm 2019;111:17–47.
CrossRef Google scholar
[8]
Koehl A, Hu H, Maeda S, et al. Structure of the micro-opioid receptor-Gi protein complex. Nature 2018;558:547–552.
CrossRef Google scholar
[9]
Ma Y, Yue Y, Ma Y, et al. Structural basis for apelin control of the human apelin receptor. Structure 2017;25:858–866.
CrossRef Google scholar
[10]
Manglik A, Lin H, Aryal DK, et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 2016;537:185–190.
CrossRef Google scholar
[11]
O’Connor C, White KL, Doncescu N, et al. NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc Natl Acad Sci USA 2015;112:11852–11857.
CrossRef Google scholar
[12]
Vardy E, Mosier PD, Frankowski KJ, et al. Chemotype-selective modes of action of kappa-opioid receptor agonists. J Biol Chem 2013;288:34470–34483.
CrossRef Google scholar
[13]
Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem 2004;73:953–990.
CrossRef Google scholar
[14]
Wee S, Koob GF. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010;210:121–135.
CrossRef Google scholar
[15]
Yin YL, Ye C, Zhou F, et al. Molecular basis for kinin selectivity and activation of the human bradykinin receptors. Nat Struct Mol Biol 2021;28:755–761.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(8923 KB)

Accesses

Citations

Detail

Sections
Recommended

/