Immunology of a unique biological structure: the Echinococcus laminated layer

Álvaro Díaz, Anabella A. Barrios, Leticia Grezzi, Camila Mouhape, Stephen J. Jenkins, Judith E. Allen, Cecilia Casaravilla

PDF(10230 KB)
PDF(10230 KB)
Protein Cell ›› 2023, Vol. 14 ›› Issue (2) : 87-104. DOI: 10.1093/procel/pwac023
REVIEW
REVIEW

Immunology of a unique biological structure: the Echinococcus laminated layer

Author information +
History +

Abstract

The larval stages of the cestode parasites belonging to the genus Echinococcus grow within internal organs of humans and a range of animal species. The resulting diseases, collectively termed echinococcoses, include major neglected tropical diseases of humans and livestock. Echinococcus larvae are outwardly protected by the laminated layer (LL), an acellular structure that is unique to this genus. The LL is based on a fibrillar meshwork made up of mucins, which are decorated by galactose-rich O-glycans. In addition, in the species cluster termed E. granulosus sensu lato, the LL features nano-deposits of the calcium salt of myo-inositol hexakisphosphate (Insp6). The main purpose of our article is to update the immunobiology of the LL. Major recent advances in this area are (i) the demonstration of LL “debris” at the infection site and draining lymph nodes, (ii) the characterization of the decoy activity of calcium Insp6 with respect to complement, (iii) the evidence that the LL mucin carbohydrates interact specifically with a lectin receptor expressed in Kupffer cells (Clec4F), and (iv) the characterization of what appear to be receptor-independent effects of LL particles on dendritic cells and macrophages. Much information is missing on the immunology of this intriguing structure: we discuss gaps in knowledge and propose possible avenues for research.

Keywords

mucin / complement / Echinococcus / macrophage / dendritic cell / Clec4F

Cite this article

Download citation ▾
Álvaro Díaz, Anabella A. Barrios, Leticia Grezzi, Camila Mouhape, Stephen J. Jenkins, Judith E. Allen, Cecilia Casaravilla. Immunology of a unique biological structure: the Echinococcus laminated layer. Protein Cell, 2023, 14(2): 87‒104 https://doi.org/10.1093/procel/pwac023

References

[1]
Agudelo HiguitaNI, Brunetti E, McCloskeyC. Cystic echinococcosis. J Clin Microbiol 2016;54:518–523.
CrossRef Google scholar
[2]
AmriM, Touil-Boukoffa C. A protective effect of the laminated layer on Echinococcus granulosus survival dependent on upregulation of host arginase. Acta Trop 2015;149:186–194.
CrossRef Google scholar
[3]
AndradeMA, Siles-Lucas M, EspinozaE et al. Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro. Nitric Oxide 2004;10:150–155.
CrossRef Google scholar
[4]
BarriosAA, GrezziL, MilesS et al. Inefficient and abortive classical complement pathway activation by the calcium inositol hexakisphosphate component of the Echinococcus granulosus laminated layer. Immunobiology 2019;224:710–719.
CrossRef Google scholar
[5]
BarthTFE, Herrmann TS, TappeD et al. Sensitive and specific immunohistochemical diagnosis of human alveolar echinococcosis with the monoclonal antibody Em2G11. PLoS Negl Trop Dis 2012;6:e1877.
CrossRef Google scholar
[6]
BasikaT, Muñoz N, CasaravillaC et al. Phagocyte-specific S100 proteins in the local response to the Echinococcus granulosus larva. Parasitology 2012;139:271–283.
CrossRef Google scholar
[7]
BazA, Richieri A, PugliaA et al. Antibody response in CD4-depleted mice after immunization or during early infection with Echinococcus granulosus. Parasite Immunol 1999;21:141–150.
CrossRef Google scholar
[8]
BenazzouzS, AmriM, WangJ et al. In vitro immunoregulatory activity and anti-inflammatory effect of Echinococcus granulosus laminated layer. Acta Trop 2021;218:105886.
CrossRef Google scholar
[9]
BreijoM, Anesetti G, MartínezL et al. Echinococcus granulosus: the establishment of the metacestode is associated with control of complement-mediated early inflammation. Exp Parasitol 2008;118:188–196.
CrossRef Google scholar
[10]
BrunettiE, WhiteAC. Cestode infestations: hydatid disease and cysticercosis. Infect Dis Clin N Am 2012;26:421–435.
CrossRef Google scholar
[11]
BylesV, Covarrubias AJ, Ben-SahraI et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2013;4:2834.
CrossRef Google scholar
[12]
CampbellSM, Knipper JA, RuckerlD et al. Myeloid cell recruitment versus local proliferation differentiates susceptibility from resistance to filarial infection. Elife 2018;7:e30947.
CrossRef Google scholar
[13]
CaoS, GongW, ZhangX et al. Arginase promotes immune evasion of Echinococcus granulosus in mice. Parasit Vectors 2020;13:49.
CrossRef Google scholar
[14]
CarrollMC, Isenman DE. Regulation of humoral immunity by complement. Immunity 2012;37:199–207.
CrossRef Google scholar
[15]
CasaravillaC, Brearley C, SouleS et al. Characterization of myo-inositol hexakisphosphate deposits from larval Echinococcus granulosus. FEBS J 2006;273:3192–3203.
CrossRef Google scholar
[16]
CasaravillaC, Pittini Á, RückerlD et al. Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus. Infect Immun 2014;82:3164–3176.
CrossRef Google scholar
[17]
CasaravillaC, Díaz A. Studies on the structural mucins of the Echinococcus granulosus laminated layer. Mol Biochem Parasitol 2010;174:132–136.
CrossRef Google scholar
[18]
CasaravillaC, Pittini A, RückerlD et al. Activation of the NLRP3 inflammasome by particles from the Echinococcus granulosus laminated layer. Infect Immun 2020;88:e00190-20.
CrossRef Google scholar
[19]
CasulliA, BarthTFE, TamarozziF. Echinococcus multilocularis. Trends Parasitol 2019;35:738–739.
CrossRef Google scholar
[20]
ColtortiEA, Varela-Díaz VM. Echinococcus granulosus: penetration of macromolecules and their localization on the parasite membranes of cysts. Exp Parasitol 1974;35:225–231.
CrossRef Google scholar
[21]
CoombsPJ, TaylorME, DrickamerK. Two categories of mammalian galactose-binding receptors distinguished by glycan array profiling. Glycobiology 2006;16:1C–7C.
CrossRef Google scholar
[22]
CovarrubiasAJ, Aksoylar HI, YuJ et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife 2016;5:e11612.
CrossRef Google scholar
[23]
DaiWJ, Hemphill A, WaldvogelA et al. Major carbohydrate antigen of Echinococcus multilocularis induces an immunoglobulin G response independent of alphabeta+ CD4+ T cells. Infect Immun 2001;69:6074–6083.
CrossRef Google scholar
[24]
DeppermannC, Kratofil RM, PeiselerM et al. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J Exp Med 2020;217:e20190723.
CrossRef Google scholar
[25]
DíazA. Immunology of cystic echinococcosis (hydatid disease). Br Med Bull 2017;124:121–133.
CrossRef Google scholar
[26]
DíazA. Robert Braidwood (Bob) Sim. 1951–2021: a disciple’s perspective. Viruses 2021;13:1111.
CrossRef Google scholar
[27]
DíazA, Fernández C, PittiniÁ et al. The laminated layer: recent advances and insights into Echinococcus biology and evolution. Exp Parasitol 2015;158:23–30.
CrossRef Google scholar
[28]
DíazA, Fontana EC, TodeschiniAR et al. The major surface carbohydrates of the Echinococcus granulosus cyst: mucin-type O-glycans decorated by novel galactose-based structures. Biochemistry 2009;48:11678–11691.
CrossRef Google scholar
[29]
DíazA, Casaravilla C, IrigoínF et al. Understanding the laminated layer of larval Echinococcus I: structure. Trends Parasitol 2011a;27:204–213.
CrossRef Google scholar
[30]
DíazA, AllenJE. Mapping immune response profiles: the emerging scenario from helminth immunology. Eur J Immunol 2007;37:3319–3326.
CrossRef Google scholar
[31]
DíazA, Casaravilla C, AllenJE et al. Understanding the laminated layer of larval Echinococcus II: immunology. Trends Parasitol 2011b;27:264–273.
CrossRef Google scholar
[32]
DíazA, Casaravilla C, BarriosAA et al. Parasite molecules and host responses in cystic echinococcosis. Parasite Immunol 2016;38:193–205.
CrossRef Google scholar
[33]
DíazA, Ferreira A, SimRB. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J Immunol 1997;158:3779–3786.
CrossRef Google scholar
[34]
DíazA, González-Alayón I, Pérez-TorradoV et al. CD40-CD154: a perspective from type 2 immunity. Semin Immunol 2021;53:101528.
CrossRef Google scholar
[35]
DíazA, Ibarguren S, BreijoM et al. Host-derived annexin II at the host-parasite interface of the Echinococcus granulosus hydatid cyst. Mol Biochem Parasitol 2000b;110:171–176.
CrossRef Google scholar
[36]
DíazA, Irigoín F, FerreiraF et al. Control of host complement activation by the Echinococcus granulosus hydatid cyst. Immunopharmacology 1999;42:91–98.
CrossRef Google scholar
[37]
DíazA, Sagasti C, CasaravillaC. Granulomatous responses in larval taeniid infections. Parasite Immunol 2018;40:e12523.
CrossRef Google scholar
[38]
DíazA, WillisAC, SimRB. Expression of the proteinase specialized in bone resorption, cathepsin K, in granulomatous inflammation. Mol Med 2000a;6:648–659.
CrossRef Google scholar
[39]
EisenbarthSC, Colegio OR, O’ConnorW et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008;453:1122–1126.
CrossRef Google scholar
[40]
EzekowitzRA, StahlPD. The structure and function of vertebrate mannose lectin-like proteins. J Cell Sci Suppl 1988;9:121–133.
CrossRef Google scholar
[41]
FaddenAJ, HoltOJ, DrickamerK. Molecular characterization of the rat Kupffer cell glycoprotein receptor. Glycobiology 2003;13:529–537.
CrossRef Google scholar
[42]
FerreiraAM, BreijoM, SimRB et al. Contribution of C5-mediated mechanisms to host defence against Echinococcus granulosus hydatid infection. Parasite Immunol 2000;22:445–453.
CrossRef Google scholar
[43]
FerreiraAM, Díaz A, FernándezC et al. Assessment of in vivo complement activation on the Echinococcus granulosus hydatid cyst wall. Parasite Immunol 2001;23:655–658.
CrossRef Google scholar
[44]
FishelsonZ, Müller-Eberhard HJ. C3 convertase of human complement: enhanced formation and stability of the enzyme generated with nickel instead of magnesium. J Immunol 1982;129:2603–2607.
CrossRef Google scholar
[45]
FlachTL, NgG, HariA et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 2011;17:479–487.
CrossRef Google scholar
[46]
FratiniF, Tamarozzi F, MacchiaG et al. Proteomic analysis of plasma exosomes from Cystic Echinococcosis patients provides in vivo support for distinct immune response profiles in active vs inactive infection and suggests potential biomarkers. PLoS Negl Trop Dis 2020;14:e0008586.
CrossRef Google scholar
[47]
GarlattiV, Chouquet A, LunardiT et al. Cutting edge: C1q binds deoxyribose and heparan sulfate through neighboring sites of its recognition domain. J Immunol 2010;185:808–812.
CrossRef Google scholar
[48]
GarridoVV, Dulgerian LR, StempinCC et al. The increase in mannose receptor recycling favors arginase induction and Trypanosoma cruzi survival in macrophages. Int J Biol Sci 2011;7:1257–1272.
CrossRef Google scholar
[49]
GottsteinB, DaiW, WalkerM et al. An intact laminated layer is important for the establishment of secondary Echinococcus multilocularis infection. Parasitol Res 2002;88:822–828.
CrossRef Google scholar
[50]
GottsteinB, Wunderlin E, TannerI. Echinococcus multilocularis: parasite-specific humoral and cellular immune response subsets in mouse strains susceptible (AKR, C57B1/6J) or ‘resistant’ (C57B1/10) to secondary alveolar echinococcosis. Clin Exp Immunol 1994;96:245–252.
CrossRef Google scholar
[51]
GottsteinB, Soboslay P, OrtonaE et al. Immunology of alveolar and cystic echinococcosis (AE and CE). In Advances in Parasitology. Amsterdam, Netherlands: Elsevier, 2017, 96, 1–54.
CrossRef Google scholar
[52]
Grewal,P. K. The ashwell–morell receptor. In Methods in Enzymology. Amsterdam, Netherlands: Elsevier, 2010, 479, 223–241.
CrossRef Google scholar
[53]
GrimmJ, BeckA, NellJ et al. Combining computed tomography and histology leads to an evolutionary concept of hepatic alveolar echinococcosis. Pathogens 2020b;9:E634.
CrossRef Google scholar
[54]
GrimmJ, NellJ, HillenbrandA et al. Immunohistological detection of small particles of Echinococcus multilocularis and Echinococcus granulosus in lymph nodes is associated with enlarged lymph nodes in alveolar and cystic echinococcosis. PLoS Negl Trop Dis 2020a;14:e0008921.
CrossRef Google scholar
[55]
HadaN, MoritaT, UedaT et al. Synthesis of the carbohydrate moiety of glycoproteins from the parasite Echinococcus granulosus and their antigenicity against human sera. Molecules 2021;26:5652.
CrossRef Google scholar
[56]
HarrisJ, SharpFA, LavelleEC. The role of inflammasomes in the immunostimulatory effects of particulate vaccine adjuvants. Eur J Immunol 2010;40:634–638.
CrossRef Google scholar
[57]
HawkinsPT, Stephens LR. PI3K signalling in inflammation. Biochim Biophys Acta 2015;1851:882–897.
CrossRef Google scholar
[58]
HellerNM, QiX, JunttilaIS et al. Type I IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages. Sci Signal 2008;1:ra17.
CrossRef Google scholar
[59]
HeymannF, Peusquens J, Ludwig-PortugallI et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015;62:279–291.
CrossRef Google scholar
[60]
HeymannF, TackeF. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016;13:88–110.
CrossRef Google scholar
[61]
HobergEP, JonesA, RauschRL et al. A phylogenetic hypothesis for species of the genus Taenia (Eucestoda: Taeniidae). J Parasitol 2000;86:89–98.
CrossRef Google scholar
[62]
HsuT-L, LinG, KoizumiA et al. The surface carbohydrates of the Echinococcus granulosus larva interact selectively with the rodent Kupffer cell receptor. Mol Biochem Parasitol 2013;192:55–59.
CrossRef Google scholar
[63]
HülsmeierAJ, Gehrig PM, GeyerR et al. A major Echinococcus multilocularis antigen is a mucin-type glycoprotein. J Biol Chem 2002;277:5742–5748.
CrossRef Google scholar
[64]
HulsmeierAJ, Deplazes P, NaemS et al. An Echinococcus multilocularis coproantigen is a surface glycoprotein with unique O-gycosylation. Glycobiology 2010;20:127–135.
CrossRef Google scholar
[65]
IngoldK, DaiW, RauschRL et al. Characterization of the laminated layer of in vitro cultivated Echinococcus vogeli metacestodes. J Parasitol 2001;87:55–64.
CrossRef Google scholar
[66]
IrigoínF, LaichA, FerreiraAM et al. Resistance of the Echinococcus granulosus cyst wall to complement activation: analysis of the role of Insp6 deposits. Parasite Immunol 2008;30:354–364.
CrossRef Google scholar
[67]
IrigoínF, Casaravilla C, IborraF et al. Unique precipitation and exocytosis of a calcium salt of myo -inositol hexakisphosphate in larval Echinococcus granulosus. J Cell Biochem 2004;93:1272–1281.
CrossRef Google scholar
[68]
IrigoínF, Ferreira F, FernándezC et al. myo-Inositol hexakisphosphate is a major component of an extracellular structure in the parasitic cestode. Echinococcus granulosus. 2002;362:27–304.
CrossRef Google scholar
[69]
IrigoínF, Würzner R, SimRB et al. Comparison of complement activation in vitro by different Echinococcus granulosus extracts. Parasite Immunol 1996;18:371–375.
CrossRef Google scholar
[70]
JenkinsSJ, AllenJE. The expanding world of tissue-resident macrophages. Eur J Immunol 2021;51:1882–1896.
CrossRef Google scholar
[71]
JiangY, TangY, HooverC et al. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 2021;28:3009–3021.
CrossRef Google scholar
[72]
KhamenehHJ, HoAW, SpreaficoR et al. The Syk-NFAT-IL-2 pathway in dendritic cells is required for optimal sterile immunity elicited by alum adjuvants. J Immunol 2017;198:196–204.
CrossRef Google scholar
[73]
KhooK-H, NietoA, MorrisHR et al. Structural characterization of the N-glycans from Echinococcus granulosus hydatid cyst membrane and protoscoleces. Mol Biochem Parasitol 1997;86:237–248.
CrossRef Google scholar
[74]
KoizumiA, YamanoK, SchweizerF et al. Synthesis of the carbohydrate moiety from the parasite Echinococcus multilocularis and their antigenicity against human sera. Eur J Med Chem 2011;46:1768–1778.
CrossRef Google scholar
[75]
KoizumiA, HadaN, KaburakiA et al. Synthetic studies on the carbohydrate moiety of the antigen from the parasite Echinococcus multilocularis. Carbohydr Res 2009;344:856–868.
CrossRef Google scholar
[76]
KoolM, Pétrilli V, De SmedtT et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 2008;181:3755–3759.
CrossRef Google scholar
[77]
LiY, FuJ, LingY et al. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc Natl Acad Sci USA 2017;114:8360–8365.
CrossRef Google scholar
[78]
LightowlersMW, GasserRB, HemphillA et al. Advances in the treatment, diagnosis, control and scientific understanding of taeniid cestode parasite infections over the past 50 years. Int J Parasitol 2021;51:1167–1192.
CrossRef Google scholar
[79]
LinG, Todeschini AR, KoizumiA et al. Further structural characterization of the Echinococcus granulosus laminated layer carbohydrates: the blood-antigen P1-motif gives rise to branches at different points of the O-glycan chains. Glycobiology 2013;23:438–452.
CrossRef Google scholar
[80]
LindmoK, Stenmark H. Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 2006;119:605–614.
CrossRef Google scholar
[81]
LüthS, HuberS, SchrammC et al. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J Clin Invest 2008;118:3403–3410.
CrossRef Google scholar
[82]
LymberyAJ. Phylogenetic pattern, evolutionary processes and species delimitation in the genus Echinococcus. Adv Parasitol 2017;95:111–145.
CrossRef Google scholar
[83]
MaX, WangL, ZhaoH et al. Th17 cells are associated with the Th1/Th2-cell balance during Echinococcus multilocularis infection. Mol Med Rep 2014;10:236–240.
CrossRef Google scholar
[84]
MadsenCK, Brinch-Pedersen H. Globoids and phytase: the mineral storage and release system in seeds. IJMS 2020;21:7519.
CrossRef Google scholar
[85]
ManningBD, TokerA. AKT/PKB signaling: navigating the network. Cell 2017;169:381–405.
CrossRef Google scholar
[86]
MargosMC, Grandgirard D, LeibS et al. In vitro induction of lymph node cell proliferation by mouse bone marrow dendritic cells following stimulation with different Echinococcus multilocularis antigens. J Helminthol 2011;85:128–137.
CrossRef Google scholar
[87]
MaughanCN, Preston SG, WilliamsGR. Particulate inorganic adjuvants: recent developments and future outlook. J Pharm Pharmacol 2015;67:426–449.
CrossRef Google scholar
[88]
MejriN, Gottstein B. Intraperitoneal Echinococcus multilocularis infection in C57BL/6 mice affects CD40 and B7 costimulator expression on peritoneal macrophages and impairs peritoneal T cell activation. Parasite Immunol 2006;28:373–385.
CrossRef Google scholar
[89]
MejriN, Müller J, GottsteinB. Intraperitoneal murine Echinococcus multilocularis infection induces differentiation of TGF-β-expressing DCs that remain immature: immature dendritic cells in chronic alveolar echinococcosis. Parasite Immunol 2011;33:471–482.
CrossRef Google scholar
[90]
MerleNS, ChurchSE, Fremeaux-BacchiV et al. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol 2015b;6:262.
CrossRef Google scholar
[91]
MerleNS, NoeR, Halbwachs-MecarelliL et al. Complement system part II: role in immunity. Front Immunol 2015a;6:257.
CrossRef Google scholar
[92]
MillandJ, Sandrin MS. ABO blood group and related antigens, natural antibodies and transplantation. Tissue Antigens 2006;68:459–466.
CrossRef Google scholar
[93]
MorsethDJ. Fine structure of the hydatid cyst and protoscolex of Echinococcus granulosus. J Parasitol 1967;53:312–325.
CrossRef Google scholar
[94]
Mourglia-EttlinG, Amezcua-Vesely MC, FragaR et al. Echinococcus granulosus glycoconjugates induce peritoneal B cell differentiation into antibody-secreting cells and cytokine production. Parasite Immunol 2011;33:621–631.
CrossRef Google scholar
[95]
MuL, TuZ, MiaoL et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun 2018;9:4259.
CrossRef Google scholar
[96]
NaikSH, Proietto AI, WilsonNS et al. Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J Immunol 2005;174:6592–6597.
CrossRef Google scholar
[97]
NaikSH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008;86:439–452.
CrossRef Google scholar
[98]
NgG, SharmaK, WardSM et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 2008;29:807–818.
CrossRef Google scholar
[99]
NonoJK, LutzMB, BrehmK. Expansion of host regulatory T cells by secreted products of the tapeworm Echinococcus multilocularis. Front Immunol 2020;11:798.
CrossRef Google scholar
[100]
NonoJK, Pletinckx K, LutzMB et al. Excretory/secretory-products of Echinococcus multilocularis larvae induce apoptosis and tolerogenic properties in dendritic cells in vitro. PLoS Negl Trop Dis 2012;6:e1516.
CrossRef Google scholar
[101]
Nzoumbou-BokoR, De Muylder G, SemballaS et al. Trypanosoma musculi infection in mice critically relies on mannose receptor-mediated arginase induction by a TbKHC1 kinesin H chain homolog. J Immunol 2017;199:1762–1771.
CrossRef Google scholar
[102]
PangN, ZhangF, LiS et al. TGF-β/Smad signaling pathway positively up-regulates the differentiation of Interleukin-9-producing CD4+ T cells in human Echinococcus granulosus infection. J Infect 2018;76:406–416.
CrossRef Google scholar
[103]
PangN, ZhangF, MaX et al. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection. Int Immunopharmacol 2014a;20:248–257.
CrossRef Google scholar
[104]
PangN, ZhangF, MaX et al. Th9/IL-9 profile in human echinococcosis: their involvement in immune response during infection by Echinococcus granulosus. Mediat Inflamm 2014b;2014:781649.
CrossRef Google scholar
[105]
ParkinsonJ, Wasmuth JD, SalinasG et al. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 2012;6:e1897.
CrossRef Google scholar
[106]
PetroneL, VaniniV, PetruccioliE et al. IL-4 specific-response in whole blood associates with human Cystic Echinococcosis and cyst activity. J Infect 2015;70:299–306.
CrossRef Google scholar
[107]
PittiniA, Martínez-Acosta YE, CasaravillaC et al. Particles from the Echinococcus granulosus laminated layer inhibit CD40 upregulation in dendritic cells by interfering with Akt activation. Infect Immun 2019;87:e00641–19.
CrossRef Google scholar
[108]
del PuertoL, Rovetta R, NavattaM et al. Negligible elongation of mucin glycans with Gal β1-3 units distinguishes the laminated layer of Echinococcus multilocularis from that of Echinococcus granulosus. Int J Parasitol 2016;46:311–321.
CrossRef Google scholar
[109]
RaboyV. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 2003;64:1033–1043.
CrossRef Google scholar
[110]
ReinehrM, Micheloud C, GrimmF et al. Pathology of echinococcosis: a morphologic and immunohistochemical study on 138 specimens with focus on the differential diagnosis between cystic and alveolar echinococcosis. Am J Surg Pathol 2020;44:43–54.
CrossRef Google scholar
[111]
RezkSA, Nathwani BN, ZhaoX et al. Follicular dendritic cells: origin, function, and different disease-associated patterns. Hum Pathol 2013;44:937–950.
CrossRef Google scholar
[112]
RichardsKS, ArmeC, BridgesJF. Echinococcus granulosus equinus: an ultrastructural study of the laminated layer, including changes on incubating cysts in various media. Parasitology 1983;86:399–405.
CrossRef Google scholar
[113]
RiesleS, García MP, HidalgoC et al. Bovine IgG subclasses and fertility of Echinococcus granulosus hydatid cysts. Vet Parasitol 2014;205:125–133.
CrossRef Google scholar
[114]
RodríguezPC, Zea AH, DeSalvoJ et al. L-Arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 2003;171:1232–1239.
CrossRef Google scholar
[115]
RodríguesCR, Nicolao MC, ChopM et al. Modulation of the mTOR pathway plays a central role in dendritic cell functions after Echinococcus granulosus antigen recognition. Sci Rep 2021;11:17238.
CrossRef Google scholar
[116]
RückerlD, Jenkins SJ, LaqtomNN et al. Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 2012;120:2307–2316.
CrossRef Google scholar
[117]
RückerlD, AllenJE. Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunol Rev 2014;262:113–133.
CrossRef Google scholar
[118]
RussiS, Siracusano A, VicariG. Isolation and characterization of a blood P1 active carbohydrate antigen of Echinococcus granulosus cyst membrane. J Immunol 1974;112:1061–1069.
CrossRef Google scholar
[119]
SaitoK, ToliasKF, SaciA et al. BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 2003;19:669–678.
CrossRef Google scholar
[120]
SakamotoT, Cabrera PA. Immunohistochemical observations on cellular response in unilocular hydatid lesions and lymph nodes of cattle. Acta Trop 2003;85:271–279.
CrossRef Google scholar
[121]
SakamotoT, Sugimura M. Studies on echinococcosis. XXI. Electron microscopical observations on general structure of larval tissue of multilocular Echinococcus. Jpn J Vet Res 1969;17:67–80.
[122]
Sánchez-CorralP, Pouw RB, López-TrascasaM et al. Self-damage caused by dysregulation of the complement alternative pathway: relevance of the factor H protein family. Front Immunol 2018;9:1607.
CrossRef Google scholar
[123]
SchwartzbergPL. Amplifying Btk’s signal. Immunity 2003;19:634–636.
CrossRef Google scholar
[124]
SeoanePI, Rückerl D, CasaravillaC et al. Particles from the Echinococcus granulosus laminated layer inhibit IL-4 and growth factor-driven Akt phosphorylation and proliferative responses in macrophages. Sci Rep 2016;6:39204.
CrossRef Google scholar
[125]
ShakibapourM, Shojaie B, Yousofi DaraniH. Immunization with hydatid cyst wall antigens can inhibit breast cancer through changes in serum levels of Th1/Th2 cytokines. Int J Prev Med 2020;11:189.
[126]
ShiY. To forge a solid immune recognition. Protein Cell 2012;3:564–570.
CrossRef Google scholar
[127]
SoufliI, ToumiR, RafaH et al. Crude extract of hydatid laminated layer from Echinococcus granulosus cyst attenuates mucosal intestinal damage and inflammatory responses in Dextran Sulfate Sodium induced colitis in mice. J Inflamm 2015;12:19.
CrossRef Google scholar
[128]
SteersNJ, RoganMT, HeathS. In-vitro susceptibility of hydatid cysts of Echinococcus granulosus to nitric oxide and the effect of the laminated layer on nitric oxide production. Parasite Immunol 2001;23:411–417.
CrossRef Google scholar
[129]
TaherkhaniH, ZeyhleE, RoganMT. Antibody responses in human cystic hydatid disease to the laminated layer of Echinococcus granulosus. Parasitol Res 2007;101:647–652.
CrossRef Google scholar
[130]
TaylorME, Snelling T, SmithDF et al. Absence of a human ortholog of rodent Kupffer cell galactose-binding receptor encoded by the CLEC4f gene. Glycobiology 2019;29:332–345.
CrossRef Google scholar
[131]
ThompsonRCA. Biology and systematics of Echinococcus. Adv Parasitol 2017;95:65–109.
CrossRef Google scholar
[132]
ThompsonRCA, Jenkins DJ. Echinococcus as a model system: biology and epidemiology. Int J Parasitol 2014;44:865–877.
CrossRef Google scholar
[133]
ThomsonAW, KnollePA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010;10:753–766.
CrossRef Google scholar
[134]
ThorntonDJ, SharpeC, RidleyC. Intracellular processing of human secreted polymeric airway mucins. Ann ATS 2018;15:S154–S158.
CrossRef Google scholar
[135]
TorresJ, Domínguez S, CerdáMF et al. Solution behaviour of myo-in-ositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J Inorg Biochem 2005;99:828–840.
CrossRef Google scholar
[136]
TsaiIJ, Zarowiecki M, HolroydN et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013;496:57–63.
CrossRef Google scholar
[137]
Van der KaayJ, Van Haastert PJ. Desalting inositolpolyphosphates by dialysis. Anal Biochem 1995;225:183–185.
CrossRef Google scholar
[138]
Varela-DíazVM, Coltorti EA. The presence of host immunoglobulins in hydatid cyst membranes. J Parasitol 1973;59:484–488.
CrossRef Google scholar
[139]
VeigaN, TorresJ, DomínguezS et al. The behaviour of myo-inositol hexakisphosphate in the presence of magnesium(II) and calcium(II): protein-free soluble Insp6 is limited to 49 μM under cytosolic/nuclear conditions. J Inorg Biochem 2006;100:1800–1810.
CrossRef Google scholar
[140]
WalkerM, BazA, DematteisS et al. Isolation and characterization of a secretory component of Echinococcus multilocularis meta-cestodes potentially involved in modulating the host-parasite interface. Infect Immun 2004;72:527–536.
CrossRef Google scholar
[141]
WangH, ZhangCS, FangBB et al. Dual role of hepatic macrophages in the establishment of the Echinococcus multilocularis metacestode in mice. Front Immunol 2020;11:600635.
CrossRef Google scholar
[142]
WangJ, von Gunten S, BeldiG et al. Digest the sugar, kill the parasite: a new experimental concept in treating alveolar echinococcosis. Pharmacology 2021;106:3–8.
CrossRef Google scholar
[143]
WangJ, Cardoso R, MarrerosN et al. Foxp3+ T regulatory cells as a potential target for immunotherapy against primary infection with Echinococcus multilocularis eggs. Infect Immun 2018;86:13.
CrossRef Google scholar
[144]
WangJ, LinR, ZhangW et al. Transcriptional profiles of cytokine/chemokine factors of immune cell-homing to the parasitic lesions: a comprehensive one-year course study in the liver of E. multilocularis-infected mice. PLoS One 2014;9:e91638.
CrossRef Google scholar
[145]
WangJ, Gottstein B. Immunoregulation m larval Echinococcus multuocularis infection. Parasite Immunol 2016;38:182–192.
CrossRef Google scholar
[146]
WebbLM, LundieRJ, BorgerJG et al. Type I interferon is required for T helper (Th) 2 induction by dendritic cells. EMBO J 2017;36:2404–2418.
CrossRef Google scholar
[147]
WeisserSB, McLarren KW, VoglmaierN et al. Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur J Immunol 2011;41:1742–1753.
CrossRef Google scholar
[148]
WenH, Vuitton L, TuxunT et al. Echinococcosis: advances in the 21st century. Clin Microbiol Rev 2019;32:e00075-18.
CrossRef Google scholar
[149]
YamanoK, Koizumi A, TakedaT et al. Galal-4Galβ1-3GalNAc is the dominant epitope of Em2 antigen, the mucin-type glycoprotein from Echinococcus multilocularis. Parasitol Res 2012;111:795–805.
CrossRef Google scholar
[150]
YangC-Y, ChenJB, TsaiTF et al. CLEC4F is an inducible C-Type Lectin in F4/80-positive cells and is involved in alpha-galactosylcer-amide presentation in liver. PLoS One 2013;8:e65070.
CrossRef Google scholar
[151]
YasenA, SunW, AiniA et al. Single-Cell RNA sequencing reveals the heterogeneity of infiltrating immune cell profiles in the hepatic cystic echinococcosis microenvironment. Infect Immun 2021;89:e0029721.
CrossRef Google scholar
[152]
YouQ, ChengL, KedlRM et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008;48:978–990.
CrossRef Google scholar
[153]
ZhangW, WenH, LiJ et al. Immunology and immunodiagnosis of cystic echinococcosis: an update. Clin Dev Immunol 2012:2012:101895.
CrossRef Google scholar
[154]
ZhengH, ZhangW, ZhangL et al. The genome of the hydatid tape-worm Echinococcus granulosus. Nat Genet 2013;45:1168–1175.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(10230 KB)

Accesses

Citations

Detail

Sections
Recommended

/